Cargando…
Geometric flows and (some of) their physical applications
The geometric evolution equations provide new ways to address a variety of non-linear problems in Riemannian geometry, and, at the same time, they enjoy numerous physical applications, most notably within the renormalization group analysis of non-linear sigma models and in general relativity. They a...
Autor principal: | |
---|---|
Lenguaje: | eng |
Publicado: |
2005
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/904317 |
_version_ | 1780908758496444416 |
---|---|
author | Bakas, Ioannis |
author_facet | Bakas, Ioannis |
author_sort | Bakas, Ioannis |
collection | CERN |
description | The geometric evolution equations provide new ways to address a variety of non-linear problems in Riemannian geometry, and, at the same time, they enjoy numerous physical applications, most notably within the renormalization group analysis of non-linear sigma models and in general relativity. They are divided into classes of intrinsic and extrinsic curvature flows. Here, we review the main aspects of intrinsic geometric flows driven by the Ricci curvature, in various forms, and explain the intimate relation between Ricci and Calabi flows on Kahler manifolds using the notion of super-evolution. The integration of these flows on two-dimensional surfaces relies on the introduction of a novel class of infinite dimensional algebras with infinite growth. It is also explained in this context how Kac's K_2 simple Lie algebra can be used to construct metrics on S^2 with prescribed scalar curvature equal to the sum of any holomorphic function and its complex conjugate; applications of this special problem to general relativity and to a model of interfaces in statistical mechanics are also briefly discussed. |
id | cern-904317 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2005 |
record_format | invenio |
spelling | cern-9043172019-09-30T06:29:59Zhttp://cds.cern.ch/record/904317engBakas, IoannisGeometric flows and (some of) their physical applicationsParticle Physics - TheoryThe geometric evolution equations provide new ways to address a variety of non-linear problems in Riemannian geometry, and, at the same time, they enjoy numerous physical applications, most notably within the renormalization group analysis of non-linear sigma models and in general relativity. They are divided into classes of intrinsic and extrinsic curvature flows. Here, we review the main aspects of intrinsic geometric flows driven by the Ricci curvature, in various forms, and explain the intimate relation between Ricci and Calabi flows on Kahler manifolds using the notion of super-evolution. The integration of these flows on two-dimensional surfaces relies on the introduction of a novel class of infinite dimensional algebras with infinite growth. It is also explained in this context how Kac's K_2 simple Lie algebra can be used to construct metrics on S^2 with prescribed scalar curvature equal to the sum of any holomorphic function and its complex conjugate; applications of this special problem to general relativity and to a model of interfaces in statistical mechanics are also briefly discussed.The geometric evolution equations provide new ways to address a variety of non-linear problems in Riemannian geometry, and, at the same time, they enjoy numerous physical applications, most notably within the renormalization group analysis of non-linear sigma models and in general relativity. They are divided into classes of intrinsic and extrinsic curvature flows. Here, we review the main aspects of intrinsic geometric flows driven by the Ricci curvature, in various forms, and explain the intimate relation between Ricci and Calabi flows on Kahler manifolds using the notion of super-evolution. The integration of these flows on two-dimensional surfaces relies on the introduction of a novel class of infinite dimensional algebras with infinite growth. It is also explained in this context how Kac's K_2 simple Lie algebra can be used to construct metrics on S^2 with prescribed scalar curvature equal to the sum of any holomorphic function and its complex conjugate: applications of this special problem to general relativity and to a model of interfaces in statistical mechanics are also briefly discussed.The geometric evolution equations provide new ways to address a variety of non-linear problems in Riemannian geometry, and, at the same time, they enjoy numerous physical applications, most notably within the renormalization group analysis of non-linear sigma models and in general relativity. They are divided into classes of intrinsic and extrinsic curvature flows. Here, we review the main aspects of intrinsic geometric flows driven by the Ricci curvature, in various forms, and explain the intimate relation between Ricci and Calabi flows on Kahler manifolds using the notion of super-evolution. The integration of these flows on two-dimensional surfaces relies on the introduction of a novel class of infinite dimensional algebras with infinite growth. It is also explained in this context how Kac's K_2 simple Lie algebra can be used to construct metrics on S^2 with prescribed scalar curvature equal to the sum of any holomorphic function and its complex conjugate: applications of this special problem to general relativity and to a model of interfaces in statistical mechanics are also briefly discussed.The geometric evolution equations provide new ways to address a variety of non-linear problems in Riemannian geometry, and, at the same time, they enjoy numerous physical applications, most notably within the renormalization group analysis of non-linear sigma models and in general relativity. They are divided into classes of intrinsic and extrinsic curvature flows. Here, we review the main aspects of intrinsic geometric flows driven by the Ricci curvature, in various forms, and explain the intimate relation between Ricci and Calabi flows on Ka<hler manifolds using the notion of super-evolution. The integration of these flows on two-dimensional surfaces relies on the introduction of a novel class of infinite dimensional algebras with infinite growth. It is also explained in this context how Kac's K_2 simple Lie algebra can be used to construct metrics on S^2 with prescribed scalar curvature equal to the sum of any holomorphic function and its complex conjugate; applications of this special problem to general relativity and to a model of interfaces in statistical mechanics are also briefly discussed.hep-th/0511057CERN-PH-TH-2005-211oai:cds.cern.ch:9043172005-11-04 |
spellingShingle | Particle Physics - Theory Bakas, Ioannis Geometric flows and (some of) their physical applications |
title | Geometric flows and (some of) their physical applications |
title_full | Geometric flows and (some of) their physical applications |
title_fullStr | Geometric flows and (some of) their physical applications |
title_full_unstemmed | Geometric flows and (some of) their physical applications |
title_short | Geometric flows and (some of) their physical applications |
title_sort | geometric flows and (some of) their physical applications |
topic | Particle Physics - Theory |
url | http://cds.cern.ch/record/904317 |
work_keys_str_mv | AT bakasioannis geometricflowsandsomeoftheirphysicalapplications |