Cargando…

On the Riemann zeta-function and analytic characteristic functions

Set $f(s) :=1/(\sin(\pi s/4)q(1/2 + s))$ with $q(s) := \pi^{-s/2} \, 2 \Gamma (1 + s/2)(s-1) \zeta (s)$. The Riemann hypothesis, RH, and the simple zeros conjecture, SZC, together with conjectures advanced by the author are used to show that $f(s)$on each vertical strip $V_{4n}$ of $s$ with $4n <...

Descripción completa

Detalles Bibliográficos
Autor principal: Csizmazia, A P
Lenguaje:eng
Publicado: 2005
Materias:
Acceso en línea:http://cds.cern.ch/record/904811
_version_ 1780908766968938496
author Csizmazia, A P
author_facet Csizmazia, A P
author_sort Csizmazia, A P
collection CERN
description Set $f(s) :=1/(\sin(\pi s/4)q(1/2 + s))$ with $q(s) := \pi^{-s/2} \, 2 \Gamma (1 + s/2)(s-1) \zeta (s)$. The Riemann hypothesis, RH, and the simple zeros conjecture, SZC, together with conjectures advanced by the author are used to show that $f(s)$on each vertical strip $V_{4n}$ of $s$ with $4n < {\rm Re} \, (s) < 4(n+1)$ provides an analytic characteristic function, $(-1)^n \cdot f(s) = \int_R (dy) e^{sy} P_{4n} (y)$ with $P_{4n} (y)$ positive. The essential case with $n = 0$ implies RH. A formula is obtained for $P_{4n} (y)$, which for $y$ negative involves the critical zeros. An alternative formula is obtained for $P_{4n} (y)$, without relying on RH, SZC or other unproven conjectures. It does not involve the critical zeros. Analogous resultsfor the cases of the Dirichlet $L$-functions and the Ramanujan tau Dirichlet $L$-function are conjectured.
id cern-904811
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2005
record_format invenio
spelling cern-9048112019-09-30T06:29:59Zhttp://cds.cern.ch/record/904811engCsizmazia, A POn the Riemann zeta-function and analytic characteristic functionsMathematical Physics and MathematicsSet $f(s) :=1/(\sin(\pi s/4)q(1/2 + s))$ with $q(s) := \pi^{-s/2} \, 2 \Gamma (1 + s/2)(s-1) \zeta (s)$. The Riemann hypothesis, RH, and the simple zeros conjecture, SZC, together with conjectures advanced by the author are used to show that $f(s)$on each vertical strip $V_{4n}$ of $s$ with $4n < {\rm Re} \, (s) < 4(n+1)$ provides an analytic characteristic function, $(-1)^n \cdot f(s) = \int_R (dy) e^{sy} P_{4n} (y)$ with $P_{4n} (y)$ positive. The essential case with $n = 0$ implies RH. A formula is obtained for $P_{4n} (y)$, which for $y$ negative involves the critical zeros. An alternative formula is obtained for $P_{4n} (y)$, without relying on RH, SZC or other unproven conjectures. It does not involve the critical zeros. Analogous resultsfor the cases of the Dirichlet $L$-functions and the Ramanujan tau Dirichlet $L$-function are conjectured.IHES-M-2005-18oai:cds.cern.ch:9048112005
spellingShingle Mathematical Physics and Mathematics
Csizmazia, A P
On the Riemann zeta-function and analytic characteristic functions
title On the Riemann zeta-function and analytic characteristic functions
title_full On the Riemann zeta-function and analytic characteristic functions
title_fullStr On the Riemann zeta-function and analytic characteristic functions
title_full_unstemmed On the Riemann zeta-function and analytic characteristic functions
title_short On the Riemann zeta-function and analytic characteristic functions
title_sort on the riemann zeta-function and analytic characteristic functions
topic Mathematical Physics and Mathematics
url http://cds.cern.ch/record/904811
work_keys_str_mv AT csizmaziaap ontheriemannzetafunctionandanalyticcharacteristicfunctions