Cargando…
Sur la conjecture faible de Greenberg dans le cas abélien $p$-décomposé
Let $p$ be an odd prime. For any CM number field $K$ containing a primitive $p^{\rm th}$-root of unity, class field theory and Kummer theory put together yield the well known reflection inequality $\lambda^+ \leq \lambda^-$ between the ``plus'' and``minus'' parts of the $\lambda$...
Autor principal: | |
---|---|
Lenguaje: | fre |
Publicado: |
2005
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/904812 |
_version_ | 1780908767177605120 |
---|---|
author | Nguyen Quang Do, T |
author_facet | Nguyen Quang Do, T |
author_sort | Nguyen Quang Do, T |
collection | CERN |
description | Let $p$ be an odd prime. For any CM number field $K$ containing a primitive $p^{\rm th}$-root of unity, class field theory and Kummer theory put together yield the well known reflection inequality $\lambda^+ \leq \lambda^-$ between the ``plus'' and``minus'' parts of the $\lambda$-invariant of $K$. Greenberg's classical conjecture predicts the vanishing of $\lambda^+$. We propose a weak form of this conjecture: $\lambda^+ = \lambda^-$ if and only if $\lambda^+ = \lambda^- = 0$, and we proveit when $K^+$ is abelian, $p$ is totally split in $K^+$, and certain (mild) conditions on the cohomology of circular units are satisfied. |
id | cern-904812 |
institution | Organización Europea para la Investigación Nuclear |
language | fre |
publishDate | 2005 |
record_format | invenio |
spelling | cern-9048122019-09-30T06:29:59Zhttp://cds.cern.ch/record/904812freNguyen Quang Do, TSur la conjecture faible de Greenberg dans le cas abélien $p$-décomposéMathematical Physics and MathematicsLet $p$ be an odd prime. For any CM number field $K$ containing a primitive $p^{\rm th}$-root of unity, class field theory and Kummer theory put together yield the well known reflection inequality $\lambda^+ \leq \lambda^-$ between the ``plus'' and``minus'' parts of the $\lambda$-invariant of $K$. Greenberg's classical conjecture predicts the vanishing of $\lambda^+$. We propose a weak form of this conjecture: $\lambda^+ = \lambda^-$ if and only if $\lambda^+ = \lambda^- = 0$, and we proveit when $K^+$ is abelian, $p$ is totally split in $K^+$, and certain (mild) conditions on the cohomology of circular units are satisfied.IHES-M-2005-20oai:cds.cern.ch:9048122005 |
spellingShingle | Mathematical Physics and Mathematics Nguyen Quang Do, T Sur la conjecture faible de Greenberg dans le cas abélien $p$-décomposé |
title | Sur la conjecture faible de Greenberg dans le cas abélien $p$-décomposé |
title_full | Sur la conjecture faible de Greenberg dans le cas abélien $p$-décomposé |
title_fullStr | Sur la conjecture faible de Greenberg dans le cas abélien $p$-décomposé |
title_full_unstemmed | Sur la conjecture faible de Greenberg dans le cas abélien $p$-décomposé |
title_short | Sur la conjecture faible de Greenberg dans le cas abélien $p$-décomposé |
title_sort | sur la conjecture faible de greenberg dans le cas abélien $p$-décomposé |
topic | Mathematical Physics and Mathematics |
url | http://cds.cern.ch/record/904812 |
work_keys_str_mv | AT nguyenquangdot surlaconjecturefaibledegreenbergdanslecasabelienpdecompose |