Cargando…

Sur la conjecture faible de Greenberg dans le cas abélien $p$-décomposé

Let $p$ be an odd prime. For any CM number field $K$ containing a primitive $p^{\rm th}$-root of unity, class field theory and Kummer theory put together yield the well known reflection inequality $\lambda^+ \leq \lambda^-$ between the ``plus'' and``minus'' parts of the $\lambda$...

Descripción completa

Detalles Bibliográficos
Autor principal: Nguyen Quang Do, T
Lenguaje:fre
Publicado: 2005
Materias:
Acceso en línea:http://cds.cern.ch/record/904812
_version_ 1780908767177605120
author Nguyen Quang Do, T
author_facet Nguyen Quang Do, T
author_sort Nguyen Quang Do, T
collection CERN
description Let $p$ be an odd prime. For any CM number field $K$ containing a primitive $p^{\rm th}$-root of unity, class field theory and Kummer theory put together yield the well known reflection inequality $\lambda^+ \leq \lambda^-$ between the ``plus'' and``minus'' parts of the $\lambda$-invariant of $K$. Greenberg's classical conjecture predicts the vanishing of $\lambda^+$. We propose a weak form of this conjecture: $\lambda^+ = \lambda^-$ if and only if $\lambda^+ = \lambda^- = 0$, and we proveit when $K^+$ is abelian, $p$ is totally split in $K^+$, and certain (mild) conditions on the cohomology of circular units are satisfied.
id cern-904812
institution Organización Europea para la Investigación Nuclear
language fre
publishDate 2005
record_format invenio
spelling cern-9048122019-09-30T06:29:59Zhttp://cds.cern.ch/record/904812freNguyen Quang Do, TSur la conjecture faible de Greenberg dans le cas abélien $p$-décomposéMathematical Physics and MathematicsLet $p$ be an odd prime. For any CM number field $K$ containing a primitive $p^{\rm th}$-root of unity, class field theory and Kummer theory put together yield the well known reflection inequality $\lambda^+ \leq \lambda^-$ between the ``plus'' and``minus'' parts of the $\lambda$-invariant of $K$. Greenberg's classical conjecture predicts the vanishing of $\lambda^+$. We propose a weak form of this conjecture: $\lambda^+ = \lambda^-$ if and only if $\lambda^+ = \lambda^- = 0$, and we proveit when $K^+$ is abelian, $p$ is totally split in $K^+$, and certain (mild) conditions on the cohomology of circular units are satisfied.IHES-M-2005-20oai:cds.cern.ch:9048122005
spellingShingle Mathematical Physics and Mathematics
Nguyen Quang Do, T
Sur la conjecture faible de Greenberg dans le cas abélien $p$-décomposé
title Sur la conjecture faible de Greenberg dans le cas abélien $p$-décomposé
title_full Sur la conjecture faible de Greenberg dans le cas abélien $p$-décomposé
title_fullStr Sur la conjecture faible de Greenberg dans le cas abélien $p$-décomposé
title_full_unstemmed Sur la conjecture faible de Greenberg dans le cas abélien $p$-décomposé
title_short Sur la conjecture faible de Greenberg dans le cas abélien $p$-décomposé
title_sort sur la conjecture faible de greenberg dans le cas abélien $p$-décomposé
topic Mathematical Physics and Mathematics
url http://cds.cern.ch/record/904812
work_keys_str_mv AT nguyenquangdot surlaconjecturefaibledegreenbergdanslecasabelienpdecompose