Cargando…
Observations on the Darboux coordinates for rigid special geometry
We exploit some relations which exist when (rigid) special geometry is formulated in real symplectic special coordinates $P^I=(p^\Lambda,q_\Lambda), I=1,...,2n$. The central role of the real $2n\times 2n$ matrix $M(\Re \mathcal{F},\Im \mathcal{F})$, where $\mathcal{F} = \partial_\Lambda\partial_\Sig...
Autores principales: | , |
---|---|
Lenguaje: | eng |
Publicado: |
2006
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1088/1126-6708/2006/05/008 http://cds.cern.ch/record/931608 |
_version_ | 1780909560035278848 |
---|---|
author | Ferrara, Sergio Macia, O |
author_facet | Ferrara, Sergio Macia, O |
author_sort | Ferrara, Sergio |
collection | CERN |
description | We exploit some relations which exist when (rigid) special geometry is formulated in real symplectic special coordinates $P^I=(p^\Lambda,q_\Lambda), I=1,...,2n$. The central role of the real $2n\times 2n$ matrix $M(\Re \mathcal{F},\Im \mathcal{F})$, where $\mathcal{F} = \partial_\Lambda\partial_\Sigma F$ and $F$ is the holomorphic prepotential, is elucidated in the real formalism. The property $M\Omega M=\Omega$ with $\Omega$ being the invariant symplectic form is used to prove several identities in the Darboux formulation. In this setting the matrix $M$ coincides with the (negative of the) Hessian matrix $H(S)=\frac{\partial^2 S}{\partial P^I\partial P^J}$ of a certain hamiltonian real function $S(P)$, which also provides the metric of the special K\"ahler manifold. When $S(P)=S(U+\bar U)$ is regarded as a "K\"ahler potential'' of a complex manifold with coordinates $U^I=\frac12(P^I+iZ^I)$, then it provides a K\"ahler metric of an hyperk\"ahler manifold which describes the hypermultiplet geometry obtained by c-map from the original n-dimensional special K\"ahler structure. |
id | cern-931608 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2006 |
record_format | invenio |
spelling | cern-9316082019-09-30T06:29:59Zdoi:10.1088/1126-6708/2006/05/008http://cds.cern.ch/record/931608engFerrara, SergioMacia, OObservations on the Darboux coordinates for rigid special geometryParticle Physics - TheoryWe exploit some relations which exist when (rigid) special geometry is formulated in real symplectic special coordinates $P^I=(p^\Lambda,q_\Lambda), I=1,...,2n$. The central role of the real $2n\times 2n$ matrix $M(\Re \mathcal{F},\Im \mathcal{F})$, where $\mathcal{F} = \partial_\Lambda\partial_\Sigma F$ and $F$ is the holomorphic prepotential, is elucidated in the real formalism. The property $M\Omega M=\Omega$ with $\Omega$ being the invariant symplectic form is used to prove several identities in the Darboux formulation. In this setting the matrix $M$ coincides with the (negative of the) Hessian matrix $H(S)=\frac{\partial^2 S}{\partial P^I\partial P^J}$ of a certain hamiltonian real function $S(P)$, which also provides the metric of the special K\"ahler manifold. When $S(P)=S(U+\bar U)$ is regarded as a "K\"ahler potential'' of a complex manifold with coordinates $U^I=\frac12(P^I+iZ^I)$, then it provides a K\"ahler metric of an hyperk\"ahler manifold which describes the hypermultiplet geometry obtained by c-map from the original n-dimensional special K\"ahler structure.hep-th/0602262CERN-PH-TH-2006-036oai:cds.cern.ch:9316082006-02-24 |
spellingShingle | Particle Physics - Theory Ferrara, Sergio Macia, O Observations on the Darboux coordinates for rigid special geometry |
title | Observations on the Darboux coordinates for rigid special geometry |
title_full | Observations on the Darboux coordinates for rigid special geometry |
title_fullStr | Observations on the Darboux coordinates for rigid special geometry |
title_full_unstemmed | Observations on the Darboux coordinates for rigid special geometry |
title_short | Observations on the Darboux coordinates for rigid special geometry |
title_sort | observations on the darboux coordinates for rigid special geometry |
topic | Particle Physics - Theory |
url | https://dx.doi.org/10.1088/1126-6708/2006/05/008 http://cds.cern.ch/record/931608 |
work_keys_str_mv | AT ferrarasergio observationsonthedarbouxcoordinatesforrigidspecialgeometry AT maciao observationsonthedarbouxcoordinatesforrigidspecialgeometry |