Cargando…

Observations on the Darboux coordinates for rigid special geometry

We exploit some relations which exist when (rigid) special geometry is formulated in real symplectic special coordinates $P^I=(p^\Lambda,q_\Lambda), I=1,...,2n$. The central role of the real $2n\times 2n$ matrix $M(\Re \mathcal{F},\Im \mathcal{F})$, where $\mathcal{F} = \partial_\Lambda\partial_\Sig...

Descripción completa

Detalles Bibliográficos
Autores principales: Ferrara, Sergio, Macia, O
Lenguaje:eng
Publicado: 2006
Materias:
Acceso en línea:https://dx.doi.org/10.1088/1126-6708/2006/05/008
http://cds.cern.ch/record/931608
_version_ 1780909560035278848
author Ferrara, Sergio
Macia, O
author_facet Ferrara, Sergio
Macia, O
author_sort Ferrara, Sergio
collection CERN
description We exploit some relations which exist when (rigid) special geometry is formulated in real symplectic special coordinates $P^I=(p^\Lambda,q_\Lambda), I=1,...,2n$. The central role of the real $2n\times 2n$ matrix $M(\Re \mathcal{F},\Im \mathcal{F})$, where $\mathcal{F} = \partial_\Lambda\partial_\Sigma F$ and $F$ is the holomorphic prepotential, is elucidated in the real formalism. The property $M\Omega M=\Omega$ with $\Omega$ being the invariant symplectic form is used to prove several identities in the Darboux formulation. In this setting the matrix $M$ coincides with the (negative of the) Hessian matrix $H(S)=\frac{\partial^2 S}{\partial P^I\partial P^J}$ of a certain hamiltonian real function $S(P)$, which also provides the metric of the special K\"ahler manifold. When $S(P)=S(U+\bar U)$ is regarded as a "K\"ahler potential'' of a complex manifold with coordinates $U^I=\frac12(P^I+iZ^I)$, then it provides a K\"ahler metric of an hyperk\"ahler manifold which describes the hypermultiplet geometry obtained by c-map from the original n-dimensional special K\"ahler structure.
id cern-931608
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2006
record_format invenio
spelling cern-9316082019-09-30T06:29:59Zdoi:10.1088/1126-6708/2006/05/008http://cds.cern.ch/record/931608engFerrara, SergioMacia, OObservations on the Darboux coordinates for rigid special geometryParticle Physics - TheoryWe exploit some relations which exist when (rigid) special geometry is formulated in real symplectic special coordinates $P^I=(p^\Lambda,q_\Lambda), I=1,...,2n$. The central role of the real $2n\times 2n$ matrix $M(\Re \mathcal{F},\Im \mathcal{F})$, where $\mathcal{F} = \partial_\Lambda\partial_\Sigma F$ and $F$ is the holomorphic prepotential, is elucidated in the real formalism. The property $M\Omega M=\Omega$ with $\Omega$ being the invariant symplectic form is used to prove several identities in the Darboux formulation. In this setting the matrix $M$ coincides with the (negative of the) Hessian matrix $H(S)=\frac{\partial^2 S}{\partial P^I\partial P^J}$ of a certain hamiltonian real function $S(P)$, which also provides the metric of the special K\"ahler manifold. When $S(P)=S(U+\bar U)$ is regarded as a "K\"ahler potential'' of a complex manifold with coordinates $U^I=\frac12(P^I+iZ^I)$, then it provides a K\"ahler metric of an hyperk\"ahler manifold which describes the hypermultiplet geometry obtained by c-map from the original n-dimensional special K\"ahler structure.hep-th/0602262CERN-PH-TH-2006-036oai:cds.cern.ch:9316082006-02-24
spellingShingle Particle Physics - Theory
Ferrara, Sergio
Macia, O
Observations on the Darboux coordinates for rigid special geometry
title Observations on the Darboux coordinates for rigid special geometry
title_full Observations on the Darboux coordinates for rigid special geometry
title_fullStr Observations on the Darboux coordinates for rigid special geometry
title_full_unstemmed Observations on the Darboux coordinates for rigid special geometry
title_short Observations on the Darboux coordinates for rigid special geometry
title_sort observations on the darboux coordinates for rigid special geometry
topic Particle Physics - Theory
url https://dx.doi.org/10.1088/1126-6708/2006/05/008
http://cds.cern.ch/record/931608
work_keys_str_mv AT ferrarasergio observationsonthedarbouxcoordinatesforrigidspecialgeometry
AT maciao observationsonthedarbouxcoordinatesforrigidspecialgeometry