Cargando…
Sasaki-Einstein Manifolds and Volume Minimisation
We study a variational problem whose critical point determines the Reeb vector field for a Sasaki-Einstein manifold. This extends our previous work on Sasakian geometry by lifting the condition that the manifolds are toric. We show that the Einstein-Hilbert action, restricted to a space of Sasakian...
Autores principales: | , , |
---|---|
Lenguaje: | eng |
Publicado: |
2006
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/933171 |
_version_ | 1780909603441082368 |
---|---|
author | Martelli, D Sparks, J Yau, S T |
author_facet | Martelli, D Sparks, J Yau, S T |
author_sort | Martelli, D |
collection | CERN |
description | We study a variational problem whose critical point determines the Reeb vector field for a Sasaki-Einstein manifold. This extends our previous work on Sasakian geometry by lifting the condition that the manifolds are toric. We show that the Einstein-Hilbert action, restricted to a space of Sasakian metrics on a link L in a Calabi-Yau cone M, is the volume functional, which in fact is a function on the space of Reeb vector fields. We relate this function both to the Duistermaat-Heckman formula and also to a limit of a certain equivariant index on M that counts holomorphic functions. Both formulae may be evaluated by localisation. This leads to a general formula for the volume function in terms of topological fixed point data. As a result we prove that the volume of any Sasaki-Einstein manifold, relative to that of the round sphere, is always an algebraic number. In complex dimension n=3 these results provide, via AdS/CFT, the geometric counterpart of a-maximisation in four dimensional superconformal field theories. We also show that our variational problem dynamically sets to zero the Futaki invariant of the transverse space, the latter being an obstruction to the existence of a Kahler-Einstein metric. |
id | cern-933171 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2006 |
record_format | invenio |
spelling | cern-9331712019-09-30T06:29:59Zhttp://cds.cern.ch/record/933171engMartelli, DSparks, JYau, S TSasaki-Einstein Manifolds and Volume MinimisationParticle Physics - TheoryWe study a variational problem whose critical point determines the Reeb vector field for a Sasaki-Einstein manifold. This extends our previous work on Sasakian geometry by lifting the condition that the manifolds are toric. We show that the Einstein-Hilbert action, restricted to a space of Sasakian metrics on a link L in a Calabi-Yau cone M, is the volume functional, which in fact is a function on the space of Reeb vector fields. We relate this function both to the Duistermaat-Heckman formula and also to a limit of a certain equivariant index on M that counts holomorphic functions. Both formulae may be evaluated by localisation. This leads to a general formula for the volume function in terms of topological fixed point data. As a result we prove that the volume of any Sasaki-Einstein manifold, relative to that of the round sphere, is always an algebraic number. In complex dimension n=3 these results provide, via AdS/CFT, the geometric counterpart of a-maximisation in four dimensional superconformal field theories. We also show that our variational problem dynamically sets to zero the Futaki invariant of the transverse space, the latter being an obstruction to the existence of a Kahler-Einstein metric.hep-th/0603021CERN-PH-TH-2006-039HUTP-2006-A-0002oai:cds.cern.ch:9331712006-03-03 |
spellingShingle | Particle Physics - Theory Martelli, D Sparks, J Yau, S T Sasaki-Einstein Manifolds and Volume Minimisation |
title | Sasaki-Einstein Manifolds and Volume Minimisation |
title_full | Sasaki-Einstein Manifolds and Volume Minimisation |
title_fullStr | Sasaki-Einstein Manifolds and Volume Minimisation |
title_full_unstemmed | Sasaki-Einstein Manifolds and Volume Minimisation |
title_short | Sasaki-Einstein Manifolds and Volume Minimisation |
title_sort | sasaki-einstein manifolds and volume minimisation |
topic | Particle Physics - Theory |
url | http://cds.cern.ch/record/933171 |
work_keys_str_mv | AT martellid sasakieinsteinmanifoldsandvolumeminimisation AT sparksj sasakieinsteinmanifoldsandvolumeminimisation AT yaust sasakieinsteinmanifoldsandvolumeminimisation |