Cargando…
Inflation model constraints from the Wilkinson Microwave Anisotropy Probe three-year data
We extract parameters relevant for distinguishing among single-field inflation models from the Wilkinson Microwave Anisotropy Probe (WMAP) three-year data set, and also from WMAP in combination with the Sloan Digital Sky Survey (SDSS) galaxy power spectrum. Our analysis leads to the following conclu...
Autores principales: | , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2006
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1103/PhysRevD.74.023502 http://cds.cern.ch/record/950273 |
Sumario: | We extract parameters relevant for distinguishing among single-field inflation models from the Wilkinson Microwave Anisotropy Probe (WMAP) three-year data set, and also from WMAP in combination with the Sloan Digital Sky Survey (SDSS) galaxy power spectrum. Our analysis leads to the following conclusions: 1) the Harrison--Zel'dovich model is consistent with both data sets at a 95% confidence level; 2) there is no strong evidence for running of the spectral index of scalar perturbations; 3) Potentials of the form V \propto \phi^p are consistent with the data for p = 2, and are marginally consistent with the WMAP data considered alone for p = 4, but ruled out by WMAP combined with SDSS. We perform a "Monte Carlo reconstruction" of the inflationary potential, and find that: 1) there is no evidence to support an observational lower bound on the amplitude of gravitational waves produced during inflation; 2) models such as simple hybrid potentials which evolve toward an inflationary late-time attractor in the space of flow parameters are strongly disfavored by the data, 3) models selected with even a weak slow-roll prior strongly cluster in the region favoring a "red" power spectrum and no running of the spectral index, consistent with simple single-field inflation models. |
---|