Cargando…
Design, construction and commissioning of the Thermal Screen Control System for the CMS Tracker detector at CERN
The CERN (European Organization for Nuclear Research) laboratory is currently building the Large Hadron Collider (LHC). Four international collaborations have designed (and are now constructing) detectors able to exploit the physics potential of this collider. Among them is the Compact Muon Solenoid...
Autor principal: | |
---|---|
Lenguaje: | eng |
Publicado: |
2006
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/962573 |
_version_ | 1780910262113533952 |
---|---|
author | Carrone, E |
author_facet | Carrone, E |
author_sort | Carrone, E |
collection | CERN |
description | The CERN (European Organization for Nuclear Research) laboratory is currently building the Large Hadron Collider (LHC). Four international collaborations have designed (and are now constructing) detectors able to exploit the physics potential of this collider. Among them is the Compact Muon Solenoid (CMS), a general purpose detector optimized for the search of Higgs boson and for physics beyond the Standard Model of fundamental interactions between elementary particles. This thesis presents, in particular, the design, construction, commissioning and test of the control system for a screen that provides a thermal separation between the Tracker and ECAL (Electromagnetic CALorimeter) detector of CMS (Compact Muon Solenoid experiment). Chapter 1 introduces the new challenges posed by these installations and deals, more in detail, with the Tracker detector of CMS. The size of current experiments for high energy physics is comparable to that of a small industrial plant: therefore, the techniques used for controls and regulations, although highly customized, must adopt Commercial Off The Shelf (COTS) hardare and software. The âワslow controlâ systems for the experiments at CERN make extensive use of PLCs (Programmable Logic Controllers) and SCADA (Supervisory Control and Data Acquisition) to provide safety levels (namely interlocks), regulations, remote control of high and low voltages distributions, as well as archiving and trending facilities. The system described in this thesis must follow the same philosophy and, at the same time, comply with international engineering standards. While the interlocks applications belong straightforwardly to the category of DES (Discrete Event System), and are therefore treated with a Finite State Machine approach, other controls are more strictly related to the regulation problem. Chapter 2 will focus on various aspects of modern process control and on the tools used to design the control system for the thermal screen: the principles upon which the controller is designed and tuned, and the model validated, including the Multiple Input-Multiple Output (MIMO) problematics are explained. The thermal screen itself, the constraints and the basis of its functioning are described in Chapter 3, where the thermodynamical design is discussed as well. For the LHC experiments, the aim of a control system is also to provide a well defined SIL (Safety Interlock Level) to keep the system in a safe condition; yet, in this case, it is necessary to regulate the temperature of the system within certain values and respect the constraints arising from the specific needs of the above mentioned subsystems. The most natural choice for a PLC-based controller is a PID (Proportional Integral Derivative) controller. This kind of controller is widely used in many industrial process, from batch production in the pharmaceutics or automotive field to chemical plants, distillation columns and, in general, wherever a reliable and robust control is needed. In order to design and tune PID controllers, many techniques are in use; the approach followed in this thesis is that of black-box modeling: the system is modeled in the time domain, a transfer function is inferred and a controller is designed. Then, a system identification procedure allows for a more thorough study and validation of the model, and for the controller tuning. Project of the thermal screen control including system modeling, controller design and MIMO implementation issues are entirely covered in Chapter 4. A systems engineering methodology has been followed all along to adequately manage and document every phase of the project, complying with time and budget constraints. A risk analysis has been performed, using Layer of Protection Analysis (LOPA) and Hazard and Operability Studies (HAZOP), to understand the level of protection assured by the thermal screen and its control components. Tests planned and then performed to validate the model and for quality assurance purposes are described in Chapter 5. A climatic chamber has been designed and built at CERN, where the real operating conditions of the thermal screen are simulated. Detailed test procedures have been defined, following IEEE standards, in order to completely check every single thermal screen panel. This installation allows for a comparison of different controller tuning approaches, including IAE minimization, Skogestad tuning rules, Internal Model Control (IMC), and a technique based upon the MatLab Optimization toolbox. This installation is also used for system identification purposes and for the acceptance tests of every thermal screen panel (allowing for both electrical and hydraulic checks). Also, tests have been performed on the West Hall CERN experimental area , where a full control system has been set up, for interlock high- and low- voltage lines. The interlock system operating procedures and behaviour have been validated during real operating conditions of the detector esposed to a particle beam. The satisfactory results of tests take the project to full completion, allowing the plan to reach the âワexitâ stage, when the thermal screen is ready to be installed in the Tracker and ready to be operational. |
id | cern-962573 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2006 |
record_format | invenio |
spelling | cern-9625732019-09-30T06:29:59Zhttp://cds.cern.ch/record/962573engCarrone, EDesign, construction and commissioning of the Thermal Screen Control System for the CMS Tracker detector at CERNDetectors and Experimental TechniquesThe CERN (European Organization for Nuclear Research) laboratory is currently building the Large Hadron Collider (LHC). Four international collaborations have designed (and are now constructing) detectors able to exploit the physics potential of this collider. Among them is the Compact Muon Solenoid (CMS), a general purpose detector optimized for the search of Higgs boson and for physics beyond the Standard Model of fundamental interactions between elementary particles. This thesis presents, in particular, the design, construction, commissioning and test of the control system for a screen that provides a thermal separation between the Tracker and ECAL (Electromagnetic CALorimeter) detector of CMS (Compact Muon Solenoid experiment). Chapter 1 introduces the new challenges posed by these installations and deals, more in detail, with the Tracker detector of CMS. The size of current experiments for high energy physics is comparable to that of a small industrial plant: therefore, the techniques used for controls and regulations, although highly customized, must adopt Commercial Off The Shelf (COTS) hardare and software. The âワslow controlâ systems for the experiments at CERN make extensive use of PLCs (Programmable Logic Controllers) and SCADA (Supervisory Control and Data Acquisition) to provide safety levels (namely interlocks), regulations, remote control of high and low voltages distributions, as well as archiving and trending facilities. The system described in this thesis must follow the same philosophy and, at the same time, comply with international engineering standards. While the interlocks applications belong straightforwardly to the category of DES (Discrete Event System), and are therefore treated with a Finite State Machine approach, other controls are more strictly related to the regulation problem. Chapter 2 will focus on various aspects of modern process control and on the tools used to design the control system for the thermal screen: the principles upon which the controller is designed and tuned, and the model validated, including the Multiple Input-Multiple Output (MIMO) problematics are explained. The thermal screen itself, the constraints and the basis of its functioning are described in Chapter 3, where the thermodynamical design is discussed as well. For the LHC experiments, the aim of a control system is also to provide a well defined SIL (Safety Interlock Level) to keep the system in a safe condition; yet, in this case, it is necessary to regulate the temperature of the system within certain values and respect the constraints arising from the specific needs of the above mentioned subsystems. The most natural choice for a PLC-based controller is a PID (Proportional Integral Derivative) controller. This kind of controller is widely used in many industrial process, from batch production in the pharmaceutics or automotive field to chemical plants, distillation columns and, in general, wherever a reliable and robust control is needed. In order to design and tune PID controllers, many techniques are in use; the approach followed in this thesis is that of black-box modeling: the system is modeled in the time domain, a transfer function is inferred and a controller is designed. Then, a system identification procedure allows for a more thorough study and validation of the model, and for the controller tuning. Project of the thermal screen control including system modeling, controller design and MIMO implementation issues are entirely covered in Chapter 4. A systems engineering methodology has been followed all along to adequately manage and document every phase of the project, complying with time and budget constraints. A risk analysis has been performed, using Layer of Protection Analysis (LOPA) and Hazard and Operability Studies (HAZOP), to understand the level of protection assured by the thermal screen and its control components. Tests planned and then performed to validate the model and for quality assurance purposes are described in Chapter 5. A climatic chamber has been designed and built at CERN, where the real operating conditions of the thermal screen are simulated. Detailed test procedures have been defined, following IEEE standards, in order to completely check every single thermal screen panel. This installation allows for a comparison of different controller tuning approaches, including IAE minimization, Skogestad tuning rules, Internal Model Control (IMC), and a technique based upon the MatLab Optimization toolbox. This installation is also used for system identification purposes and for the acceptance tests of every thermal screen panel (allowing for both electrical and hydraulic checks). Also, tests have been performed on the West Hall CERN experimental area , where a full control system has been set up, for interlock high- and low- voltage lines. The interlock system operating procedures and behaviour have been validated during real operating conditions of the detector esposed to a particle beam. The satisfactory results of tests take the project to full completion, allowing the plan to reach the âワexitâ stage, when the thermal screen is ready to be installed in the Tracker and ready to be operational.CERN-THESIS-2006-026oai:cds.cern.ch:9625732006-06-14T13:04:53Z |
spellingShingle | Detectors and Experimental Techniques Carrone, E Design, construction and commissioning of the Thermal Screen Control System for the CMS Tracker detector at CERN |
title | Design, construction and commissioning of the Thermal Screen Control System for the CMS Tracker detector at CERN |
title_full | Design, construction and commissioning of the Thermal Screen Control System for the CMS Tracker detector at CERN |
title_fullStr | Design, construction and commissioning of the Thermal Screen Control System for the CMS Tracker detector at CERN |
title_full_unstemmed | Design, construction and commissioning of the Thermal Screen Control System for the CMS Tracker detector at CERN |
title_short | Design, construction and commissioning of the Thermal Screen Control System for the CMS Tracker detector at CERN |
title_sort | design, construction and commissioning of the thermal screen control system for the cms tracker detector at cern |
topic | Detectors and Experimental Techniques |
url | http://cds.cern.ch/record/962573 |
work_keys_str_mv | AT carronee designconstructionandcommissioningofthethermalscreencontrolsystemforthecmstrackerdetectoratcern |