Cargando…

Radiation tolerant semiconductor sensors for tracking detectors

The CERN RD50 collaboration “Development of Radiation Hard Semiconductor Devices for Very High Luminosity Colliders” is developing radiation tolerant tracking detectors for the upgrade of the Large Hadron Collider at CERN (Super-LHC). One of the main challenges arising from the target luminosity of...

Descripción completa

Detalles Bibliográficos
Autor principal: Moll, M
Lenguaje:eng
Publicado: 2006
Materias:
Acceso en línea:https://dx.doi.org/10.1016/j.nima.2006.05.001
http://cds.cern.ch/record/964982
Descripción
Sumario:The CERN RD50 collaboration “Development of Radiation Hard Semiconductor Devices for Very High Luminosity Colliders” is developing radiation tolerant tracking detectors for the upgrade of the Large Hadron Collider at CERN (Super-LHC). One of the main challenges arising from the target luminosity of 1035 cm−2 s−1 are the unprecedented high radiation levels. Over the anticipated 5 years lifetime of the experiment a cumulated fast hadron fluence of about 1016 cm−2 will be reached for the innermost tracking layers. Further challenges are the expected reduced bunch crossing time of about 10 ns and the high track density calling for fast and high granularity detectors which also fulfill the boundary conditions of low radiation length and low costs. After a short description of the expected radiation damage after a fast hadron fluence of 1016 cm−2, several R&D approaches aiming for radiation tolerant sensor materials (defect and material engineering) and sensor designs (device engineering) are reviewed and discussed. Special emphasis is put on detectors based on oxygen-enriched Floating Zone (FZ) silicon, Czochralski (CZ) silicon and epitaxial silicon. Furthermore, recent advancements on SiC and GaN detectors, single type column 3D detectors and p-type detectors will be presented.