Cargando…
Charge Orbits of Symmetric Special Geometries and Attractors
We study the critical points of the black hole scalar potential $V_{BH}$ in N=2, d=4 supergravity coupled to $n_{V}$ vector multiplets, in an asymptotically flat extremal black hole background described by a 2(n_{V}+1)-dimensional dyonic charge vector and (complex) scalar fields which are coordinate...
Autores principales: | , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2006
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1142/S0217751X06034355 http://cds.cern.ch/record/965650 |
Sumario: | We study the critical points of the black hole scalar potential $V_{BH}$ in N=2, d=4 supergravity coupled to $n_{V}$ vector multiplets, in an asymptotically flat extremal black hole background described by a 2(n_{V}+1)-dimensional dyonic charge vector and (complex) scalar fields which are coordinates of a special K\"{a}hler manifold. For the case of homogeneous symmetric spaces, we find three general classes of regular attractor solutions with non-vanishing Bekenstein-Hawking entropy. They correspond to three (inequivalent) classes of orbits of the charge vector, which is in a 2(n_{V}+1)-dimensional representation $R_{V}$ of the U-duality group. Such orbits are non-degenerate, namely they have non-vanishing quartic invariant (for rank-3 spaces). Other than the 1/2-BPS one, there are two other distinct non-BPS classes of charge orbits, one of which has vanishing central charge. The three species of solutions to the N=2 extremal black hole attractor equations give rise to different mass spectra of the scalar fluctuations, whose pattern can be inferred by using invariance properties of the critical points of $V_{BH}$ and some group theoretical considerations on homogeneous symmetric special K\"{a}hler geometry. |
---|