Cargando…
Mitigating radiation loads in Nb3Sn quadrupoles for LHC upgrades
Challenging beam-induced energy deposition issues are addressed for the next generation of the LHC high-luminosity interaction regions based on Nb3Sn quadrupoles. Detailed MARS15 Monte Carlo energy deposition calculations are performed for various coil diameters, thicknesses and materials of the inn...
Autores principales: | , |
---|---|
Lenguaje: | eng |
Publicado: |
2006
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1103/PhysRevSTAB.9.101001 http://cds.cern.ch/record/976091 |
Sumario: | Challenging beam-induced energy deposition issues are addressed for the next generation of the LHC high-luminosity interaction regions based on Nb3Sn quadrupoles. Detailed MARS15 Monte Carlo energy deposition calculations are performed for various coil diameters, thicknesses and materials of the inner absorber at a field gradient of 200 T/m. It is shown that using the inner absorber made of tungsten-based materials can make the final focus superconducting quadrupoles compatible with a luminosity of 10^35 cm^-2 s^-1. |
---|