Cargando…
Ternary numbers and algebras. Reflexive numbers and Berger graphs
The Calabi-Yau spaces with SU(n) holonomy can be studied by the algebraic way through the integer lattice where one can construct the Newton reflexive polyhedra or the Berger graphs. Our conjecture is that the Berger graphs can be directly related with the $n$-ary algebras. To find such algebras we...
Autores principales: | Dubrovski, Alexey, Volkov, Guennadi |
---|---|
Lenguaje: | eng |
Publicado: |
2006
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/s00006-007-0028-9 http://cds.cern.ch/record/977812 |
Ejemplares similares
-
Reflexive Numbers and Berger Graphs from Calabi-Yau Spaces
por: Lipatov, L.N., et al.
Publicado: (2005) -
The Classification of the Simply Laced Berger Graphs from Calabi-Yau $CY_3$ spaces
por: Ellis, John R., et al.
Publicado: (2004) -
Berger algebras, weak-Berger algebras and Lorentzian holonomy
por: Leistner, T
Publicado: (2002) -
From Galois theory towards Berger-Calabi-yau geometry and new symmetries
por: Aglietti, U
Publicado: (2004) -
Ternary "Quaternions" and Ternary TU(3) algebra
por: Volkov, Guennady
Publicado: (2010)