Cargando…

Eikonal Approximation in AdS/CFT: From Shock Waves to Four-Point Functions

We initiate a program to generalize the standard eikonal approximation to compute amplitudes in Anti-de Sitter spacetimes. Inspired by the shock wave derivation of the eikonal amplitude in flat space, we study the two-point function E ~ < O_1 O_1 >_{shock} in the presence of a shock wave in An...

Descripción completa

Detalles Bibliográficos
Autores principales: Cornalba, L, Schiappa, R, Costa, Miguel S, Penedones, Joao, Cornalba, Lorenzo
Lenguaje:eng
Publicado: 2006
Materias:
Acceso en línea:https://dx.doi.org/10.1088/1126-6708/2007/08/019
http://cds.cern.ch/record/998361
Descripción
Sumario:We initiate a program to generalize the standard eikonal approximation to compute amplitudes in Anti-de Sitter spacetimes. Inspired by the shock wave derivation of the eikonal amplitude in flat space, we study the two-point function E ~ < O_1 O_1 >_{shock} in the presence of a shock wave in Anti-de Sitter, where O_1 is a scalar primary operator in the dual conformal field theory. At tree level in the gravitational coupling, we relate the shock two-point function E to the discontinuity across a kinematical branch cut of the conformal field theory four-point function A ~ < O_1 O_2 O_1 O_2 >, where O_2 creates the shock geometry in Anti-de Sitter. Finally, we extend the above results by computing E in the presence of shock waves along the horizon of Schwarzschild BTZ black holes. This work gives new tools for the study of Planckian physics in Anti-de Sitter spacetimes.