Cargando…
Progress on the upgrade of the CMS Hadron Calorimeter Front-End electronics
We present a scheme to upgrade the CMS HCAL front-end electronics in the second long shutdown to upgrade the LHC (LS2), which is expected to occur around 2018. The HCAL electronics upgrade is required to handle the major instantaneous luminosity increase (up to 5 * 1034 cm-2 s-1) and an expected int...
Autores principales: | , |
---|---|
Lenguaje: | eng |
Publicado: |
2012
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1016/j.phpro.2012.03.708 http://cds.cern.ch/record/2107976 |
Sumario: | We present a scheme to upgrade the CMS HCAL front-end electronics in the second long shutdown to upgrade the LHC (LS2), which is expected to occur around 2018. The HCAL electronics upgrade is required to handle the major instantaneous luminosity increase (up to 5 * 1034 cm-2 s-1) and an expected integrated luminosity of ∼3000 fb-1. A key aspect of the HCAL upgrade is to read out longitudinal segmentation information to improve background rejection, energy resolution, and electron isolation at the L1 trigger. This paper focuses on the requirements for the new electronics and on the proposed solutions. The requirements include increased channel count, additional timing capabilities, and additional redundancy. The electronics are required to operate in a high radiation/high magnetic field environment and are constrained by the existing infrastructure (existing on-detector custom crates, legacy optical fiber, existing water cooling plant, tight trigger latency requirement). The proposed solutions span from chip level to system level. They include the development of a new ASIC ADC, the design and testing of higher speed transmitters to handle the increased data volume, the evaluation and use of circuits from other developments, evaluation of commercial FPGAs, better thermal design, and improvements in the overall readout architecture. We will report on the progress of the designs for these upgraded systems, along with performance requirements and initial design studies. |
---|