Cargando…

Finsler Spinors and Twistors in Einstein Gravity and Modifications

We present a generalization of the spinor and twistor geometry for Finsler-Cartan spaces modelled on tangent Lorentz bundles, or on (pseudo) Riemanian manifolds. Nonholonomic (Finsler) twistors are defined as solutions of generalized twistor equations determined by spin connections and frames adapte...

Descripción completa

Detalles Bibliográficos
Autor principal: Vacaru, Sergiu I.
Lenguaje:eng
Publicado: 2012
Materias:
Acceso en línea:http://cds.cern.ch/record/2142757
_version_ 1780950272317587456
author Vacaru, Sergiu I.
author_facet Vacaru, Sergiu I.
author_sort Vacaru, Sergiu I.
collection CERN
description We present a generalization of the spinor and twistor geometry for Finsler-Cartan spaces modelled on tangent Lorentz bundles, or on (pseudo) Riemanian manifolds. Nonholonomic (Finsler) twistors are defined as solutions of generalized twistor equations determined by spin connections and frames adapted to nonlinear connection structures. We show that the constructions for local twistors can be globalized using nonholonomic deformations with 'auxiliary' metric compatible connections completely determined by the metric structure and/or the Finsler fundamental function. We explain how to perform such an approach in the Einstein gravity theory formulated in Finsler like variables with conventional nonholonomic 2+2 splitting.
id oai-inspirehep.net-1118992
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2012
record_format invenio
spelling oai-inspirehep.net-11189922023-03-14T16:37:31Zhttp://cds.cern.ch/record/2142757engVacaru, Sergiu I.Finsler Spinors and Twistors in Einstein Gravity and ModificationsMathematical Physics and MathematicsWe present a generalization of the spinor and twistor geometry for Finsler-Cartan spaces modelled on tangent Lorentz bundles, or on (pseudo) Riemanian manifolds. Nonholonomic (Finsler) twistors are defined as solutions of generalized twistor equations determined by spin connections and frames adapted to nonlinear connection structures. We show that the constructions for local twistors can be globalized using nonholonomic deformations with 'auxiliary' metric compatible connections completely determined by the metric structure and/or the Finsler fundamental function. We explain how to perform such an approach in the Einstein gravity theory formulated in Finsler like variables with conventional nonholonomic 2+2 splitting.arXiv:1206.4012oai:inspirehep.net:11189922012
spellingShingle Mathematical Physics and Mathematics
Vacaru, Sergiu I.
Finsler Spinors and Twistors in Einstein Gravity and Modifications
title Finsler Spinors and Twistors in Einstein Gravity and Modifications
title_full Finsler Spinors and Twistors in Einstein Gravity and Modifications
title_fullStr Finsler Spinors and Twistors in Einstein Gravity and Modifications
title_full_unstemmed Finsler Spinors and Twistors in Einstein Gravity and Modifications
title_short Finsler Spinors and Twistors in Einstein Gravity and Modifications
title_sort finsler spinors and twistors in einstein gravity and modifications
topic Mathematical Physics and Mathematics
url http://cds.cern.ch/record/2142757
work_keys_str_mv AT vacarusergiui finslerspinorsandtwistorsineinsteingravityandmodifications