Cargando…
A GPU offloading mechanism for LHCb
The current computational infrastructure at LHCb is designed for sequential execution. It is possible to make use of modern multi-core machines by using multi-threaded algorithms and running multiple instances in parallel, but there is no way to make efficient use of specialized massively parallel h...
Autores principales: | , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2014
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1088/1742-6596/513/5/052004 http://cds.cern.ch/record/2026341 |
_version_ | 1780947351492362240 |
---|---|
author | Badalov, Alexey Campora Perez, Daniel Hugo Zvyagin, Alexander Neufeld, Niko Vilasis Cardona, Xavier |
author_facet | Badalov, Alexey Campora Perez, Daniel Hugo Zvyagin, Alexander Neufeld, Niko Vilasis Cardona, Xavier |
author_sort | Badalov, Alexey |
collection | CERN |
description | The current computational infrastructure at LHCb is designed for sequential execution. It is possible to make use of modern multi-core machines by using multi-threaded algorithms and running multiple instances in parallel, but there is no way to make efficient use of specialized massively parallel hardware, such as graphical processing units and Intel Xeon/Phi. We extend the current infrastructure with an out-of-process computational server able to gather data from multiple instances and process them in large batches. |
id | oai-inspirehep.net-1302130 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2014 |
record_format | invenio |
spelling | oai-inspirehep.net-13021302022-08-17T13:29:09Zdoi:10.1088/1742-6596/513/5/052004http://cds.cern.ch/record/2026341engBadalov, AlexeyCampora Perez, Daniel HugoZvyagin, AlexanderNeufeld, NikoVilasis Cardona, XavierA GPU offloading mechanism for LHCbComputing and ComputersThe current computational infrastructure at LHCb is designed for sequential execution. It is possible to make use of modern multi-core machines by using multi-threaded algorithms and running multiple instances in parallel, but there is no way to make efficient use of specialized massively parallel hardware, such as graphical processing units and Intel Xeon/Phi. We extend the current infrastructure with an out-of-process computational server able to gather data from multiple instances and process them in large batches.oai:inspirehep.net:13021302014 |
spellingShingle | Computing and Computers Badalov, Alexey Campora Perez, Daniel Hugo Zvyagin, Alexander Neufeld, Niko Vilasis Cardona, Xavier A GPU offloading mechanism for LHCb |
title | A GPU offloading mechanism for LHCb |
title_full | A GPU offloading mechanism for LHCb |
title_fullStr | A GPU offloading mechanism for LHCb |
title_full_unstemmed | A GPU offloading mechanism for LHCb |
title_short | A GPU offloading mechanism for LHCb |
title_sort | gpu offloading mechanism for lhcb |
topic | Computing and Computers |
url | https://dx.doi.org/10.1088/1742-6596/513/5/052004 http://cds.cern.ch/record/2026341 |
work_keys_str_mv | AT badalovalexey agpuoffloadingmechanismforlhcb AT camporaperezdanielhugo agpuoffloadingmechanismforlhcb AT zvyaginalexander agpuoffloadingmechanismforlhcb AT neufeldniko agpuoffloadingmechanismforlhcb AT vilasiscardonaxavier agpuoffloadingmechanismforlhcb AT badalovalexey gpuoffloadingmechanismforlhcb AT camporaperezdanielhugo gpuoffloadingmechanismforlhcb AT zvyaginalexander gpuoffloadingmechanismforlhcb AT neufeldniko gpuoffloadingmechanismforlhcb AT vilasiscardonaxavier gpuoffloadingmechanismforlhcb |