Cargando…

Simulator for beam-based LHC collimator alignment

In the CERN Large Hadron Collider, collimators need to be set up to form a multistage hierarchy to ensure efficient multiturn cleaning of halo particles. Automatic algorithms were introduced during the first run to reduce the beam time required for beam-based setup, improve the alignment accuracy, a...

Descripción completa

Detalles Bibliográficos
Autores principales: Valentino, Gianluca, Aßmann, Ralph, Redaelli, Stefano, Sammut, Nicholas
Lenguaje:eng
Publicado: 2014
Materias:
Acceso en línea:https://dx.doi.org/10.1103/PhysRevSTAB.17.021003
http://cds.cern.ch/record/2011645
Descripción
Sumario:In the CERN Large Hadron Collider, collimators need to be set up to form a multistage hierarchy to ensure efficient multiturn cleaning of halo particles. Automatic algorithms were introduced during the first run to reduce the beam time required for beam-based setup, improve the alignment accuracy, and reduce the risk of human errors. Simulating the alignment procedure would allow for off-line tests of alignment policies and algorithms. A simulator was developed based on a diffusion beam model to generate the characteristic beam loss signal spike and decay produced when a collimator jaw touches the beam, which is observed in a beam loss monitor (BLM). Empirical models derived from the available measurement data are used to simulate the steady-state beam loss and crosstalk between multiple BLMs. The simulator design is presented, together with simulation results and comparison to measurement data.