Cargando…
Development of nuclear emulsions operating in vacuum for the AEgIS experiment
For the first time the AEgIS (Antihydrogen Experiment: Gravity, Interferometry, Spectroscopy) experiment will measure the Earth's local gravitational acceleration g on antimatter through the evaluation of the vertical displacement of an antihydrogen horizontal beam. This will be a model indepen...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2014
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1088/1748-0221/9/01/C01061 http://cds.cern.ch/record/2110686 |
Sumario: | For the first time the AEgIS (Antihydrogen Experiment: Gravity, Interferometry, Spectroscopy) experiment will measure the Earth's local gravitational acceleration g on antimatter through the evaluation of the vertical displacement of an antihydrogen horizontal beam. This will be a model independent test of the Weak Equivalence Principle at the base of the general relativity. The initial goal of a g measurement with a relative uncertainty of 1% will be achieved with less than 1000 detected antihydrogens, provided that their vertical position could be determined with a precision of a few micrometers. An emulsion based detector is very suitable for this purpose featuring an intrinsic sub-micrometric spatial resolution. Nevertheless, the AEgIS experiment requires unprecedented operational conditions for this type of detector, namely vacuum environment and very low temperature. An intense R&D; activity is presently going on to optimize the detector for the AEgIS experimental requirements with rather encouraging results. |
---|