Cargando…
Low-velocity transient-field technique with radioactive ion beams: g factor of the first excited 2$^{+}$ state in $^{72}$Zn
The g factor of the first excited 2+ state in 72Zn has been measured using the transient-field (TF) technique in combination with Coulomb excitation in inverse kinematics. This experiment presents only the third successful application of the TF method to a short-lived radioactive beam in 10 y, highl...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2014
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1103/PhysRevC.89.054316 http://cds.cern.ch/record/2112012 |
Sumario: | The g factor of the first excited 2+ state in 72Zn has been measured using the transient-field (TF) technique in combination with Coulomb excitation in inverse kinematics. This experiment presents only the third successful application of the TF method to a short-lived radioactive beam in 10 y, highlighting the intricacies of applying this technique to present and future isotope separator on-line facilities. The significance of the experimental result, g(21+)=+0.47(14), for establishing the structure of the Zn isotopes near N=40 is discussed on the basis of shell-model and beyond-mean-field calculations, the latter accounting for the triaxial degree of freedom, configuration mixing, and particle number and angular momentum projections. |
---|