Cargando…
Evolution of fission-fragment mass distributions in the neutron-deficient lead region
Low-energy β-delayed fission of At194,196 and Fr200,202 was studied in detail at the mass separator ISOLDE at CERN. The fission-fragment mass distributions of daughter nuclei Po194,196 and Rn202 indicate a triple-humped structure, marking the transition between asymmetric fission of Hg178,180 and sy...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2014
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1103/PhysRevC.90.041301 http://cds.cern.ch/record/2120786 |
Sumario: | Low-energy β-delayed fission of At194,196 and Fr200,202 was studied in detail at the mass separator ISOLDE at CERN. The fission-fragment mass distributions of daughter nuclei Po194,196 and Rn202 indicate a triple-humped structure, marking the transition between asymmetric fission of Hg178,180 and symmetric fission in the light Ra-Rn nuclei. Comparison with the macroscopic-microscopic finite-range liquid-drop model and the self-consistent approach employing the Gogny D1S energy density functional yields discrepancies. This demonstrates once more the need for dynamical fission calculations, because for both models the potential-energy surfaces lack pronounced structures, in contrast to those for the actinide region. |
---|