Cargando…
Characterization of the low-lying 0$^{+}$ and 2$^{+}$ states in $^{68}$Ni via $\beta$ decay of the low-spin $^{68}$Co isomer
The low-energy structure of the neutron-rich nucleus Ni68 has been investigated by measuring the β decay of the low-spin isomer in Co68 selectively produced in the decay chain of Mn68. A revised level scheme has been built based on the clear identification of β-γ-E0 delayed coincidences. Transitions...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2015
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1103/PhysRevC.91.034310 http://cds.cern.ch/record/2153728 |
Sumario: | The low-energy structure of the neutron-rich nucleus Ni68 has been investigated by measuring the β decay of the low-spin isomer in Co68 selectively produced in the decay chain of Mn68. A revised level scheme has been built based on the clear identification of β-γ-E0 delayed coincidences. Transitions between the three lowest-lying 0+ and 2+ states are discussed on the basis of measured intensities or their upper limits for unobserved branches and state-of-the-art shell model calculations. |
---|