Cargando…

The GBT-SCA, a radiation tolerant ASIC for detector control and monitoring applications in HEP experiments

The future upgrades of the LHC experiments will increase the beam luminosity leading to a corresponding growth of the amounts of data to be treated by the data acquisition systems. To address these needs, the GBT (Giga-Bit Transceiver optical link [1,2]) architecture was developed to provide the sim...

Descripción completa

Detalles Bibliográficos
Autores principales: Caratelli, A, Bonacini, S, Kloukinas, K, Marchioro, A, Moreira, P, De Oliveira, R, Paillard, C
Lenguaje:eng
Publicado: 2015
Materias:
Acceso en línea:https://dx.doi.org/10.1088/1748-0221/10/03/C03034
http://cds.cern.ch/record/2158969
Descripción
Sumario:The future upgrades of the LHC experiments will increase the beam luminosity leading to a corresponding growth of the amounts of data to be treated by the data acquisition systems. To address these needs, the GBT (Giga-Bit Transceiver optical link [1,2]) architecture was developed to provide the simultaneous transfer of readout data, timing and trigger signals as well as slow control and monitoring data. The GBT-SCA ASIC, part of the GBT chip-set, has the purpose to distribute control and monitoring signals to the on-detector front-end electronics and perform monitoring operations of detector environmental parameters. In order to meet the requirements of different front-end ASICs used in the experiments, it provides various user-configurable interfaces capable to perform simultaneous operations. It is designed employing radiation tolerant design techniques to ensure robustness against SEUs and TID radiation effects and is implemented in a commercial 130 nm CMOS technology. This work presents the GBT-SCA architecture, the ASIC interfaces, the data transfer protocol, and its integration with the GBT optical link.