Cargando…
Development of the upgraded LHCf calorimeter with $Gd_2SiO_5$ (GSO) scintillators
The Large Hadron Collider forward (LHCf) experiment was motivated to understand the hadronic interaction relevant to the cosmic-ray air shower development. LHCf has installed compact calorimeters at the LHC and observed neutral particles emitted around zero degree during 0.9, 2.76 and 7 TeV pp colli...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
SISSA
2014
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.22323/1.213.0028 http://cds.cern.ch/record/2025927 |
Sumario: | The Large Hadron Collider forward (LHCf) experiment was motivated to understand the hadronic interaction relevant to the cosmic-ray air shower development. LHCf has installed compact calorimeters at the LHC and observed neutral particles emitted around zero degree during 0.9, 2.76 and 7 TeV pp collisions and 5 TeV pPb collisions. Since the next operation in 2015 is expected under much higher radiation dose, we have upgraded the detectors, especially their scin- tillators, to be radiation harder. In this paper, we report the performance of the new imaging sensor, GSO-bar hodoscope tested by heavy-ion beam and 50-250 GeV electron beams. As the result, shower-peak position resolution of 123 m m for 100 GeV electron induced showers was achieved that is satisfactory for our physics goal |
---|