Cargando…
_version_ 1780948362741153792
author Gligorova, A
Aghion, S
Belov, A S
Bonomi, G
Bräunig, P
Bremer, Jorg
Brusa, R S
Cabaret, L
Caccia, M
Caravita, R
Castelli, F
Cerchiari, G
Cialdi, S
Comparat, D
Consolati, G
Derking, J H
Da Via, C
Di Domizio, S
Di Noto, L
Doser, M
Dudarev, A
Ferragut, R
Fontana, A
Genova, P
Giammarchi, M
Gninenko, S N
Haider, Shahid
Holmestad, H
Huse, T
Jordan, E
Kaltenbacher, T
Kellerbauer, A
Knecht, A
Krasnicky, D
Lagomarsino, V
Lehner, S
Magnani, A
Malbrunot, C
Mariazzi, S
Matveev, V A
Moia, F
Nellist, C
Nebbia, G
Nedelec, P
Oberthaler, M
Pacifico, N
Petracek, V
Prelz, F
Prevedelli, M
Riccardi, C
Røhne, O
Rotondi, A
Sandaker, H
Subieta Vasquez, M A
Spacek, M
Testera, G
Widmann, E
Yzombard, P
Zavatarelli, S
Zmeskal, J
author_facet Gligorova, A
Aghion, S
Belov, A S
Bonomi, G
Bräunig, P
Bremer, Jorg
Brusa, R S
Cabaret, L
Caccia, M
Caravita, R
Castelli, F
Cerchiari, G
Cialdi, S
Comparat, D
Consolati, G
Derking, J H
Da Via, C
Di Domizio, S
Di Noto, L
Doser, M
Dudarev, A
Ferragut, R
Fontana, A
Genova, P
Giammarchi, M
Gninenko, S N
Haider, Shahid
Holmestad, H
Huse, T
Jordan, E
Kaltenbacher, T
Kellerbauer, A
Knecht, A
Krasnicky, D
Lagomarsino, V
Lehner, S
Magnani, A
Malbrunot, C
Mariazzi, S
Matveev, V A
Moia, F
Nellist, C
Nebbia, G
Nedelec, P
Oberthaler, M
Pacifico, N
Petracek, V
Prelz, F
Prevedelli, M
Riccardi, C
Røhne, O
Rotondi, A
Sandaker, H
Subieta Vasquez, M A
Spacek, M
Testera, G
Widmann, E
Yzombard, P
Zavatarelli, S
Zmeskal, J
author_sort Gligorova, A
collection CERN
description The principal aim of the AEgIS experiment at CERN is to measure the acceleration of antihydrogen due to Earth's gravitational field. This would be a test of the Weak Equivalence Principle, which states that all bodies fall with the same acceleration independently of their mass and composition. The effect of Earth's gravitational field on antimatter will be determined by measuring the deflection of the path of the antihydrogen from a straight line. The position of the antihydrogen will be found by detecting its annihilation on the surface of a silicon detector. The gravitational measurement in AEgIS will be performed with a gravity module, which includes the silicon detector, an emulsion detector and a scintillating fibre time-of-flight detector. As the experiment attempts to determine the gravitational acceleration with a precision of 1%, a position resolution better than 10 μm is required. Here we present the results of a study of antiproton annihilations in a 3D silicon pixel sensor and compare the results with a previous study using a monolithic active pixel sensor. This work is part of a larger study on different silicon sensor technologies needed for the development of a silicon position detector for the AEgIS experiment. The 3D detector together with its readout electronics have been originally designed for the ATLAS detector at the LHC. The direct annihilation of low energy antiprotons ( ~ 100 keV) takes place in the first few μm of the silicon sensor and we show that the charged products of the annihilation can be detected with the same sensor. The present study also aims to understand the signature of an antiproton annihilation event in segmented silicon detectors and compares it with a GEANT4 simulation model. These results will be used to determine the geometrical and process parameters to be adopted by the silicon annihilation detector to be installed in AEgIS.
id oai-inspirehep.net-1369042
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2014
record_format invenio
spelling oai-inspirehep.net-13690422019-09-30T06:29:59Zdoi:10.1109/TNS.2014.2368591http://cds.cern.ch/record/2056672engGligorova, AAghion, SBelov, A SBonomi, GBräunig, PBremer, JorgBrusa, R SCabaret, LCaccia, MCaravita, RCastelli, FCerchiari, GCialdi, SComparat, DConsolati, GDerking, J HDa Via, CDi Domizio, SDi Noto, LDoser, MDudarev, AFerragut, RFontana, AGenova, PGiammarchi, MGninenko, S NHaider, ShahidHolmestad, HHuse, TJordan, EKaltenbacher, TKellerbauer, AKnecht, AKrasnicky, DLagomarsino, VLehner, SMagnani, AMalbrunot, CMariazzi, SMatveev, V AMoia, FNellist, CNebbia, GNedelec, POberthaler, MPacifico, NPetracek, VPrelz, FPrevedelli, MRiccardi, CRøhne, ORotondi, ASandaker, HSubieta Vasquez, M ASpacek, MTestera, GWidmann, EYzombard, PZavatarelli, SZmeskal, JComparison of Planar and 3D Silicon Pixel Sensors Used for Detection of Low Energy AntiprotonsDetectors and Experimental TechniquesThe principal aim of the AEgIS experiment at CERN is to measure the acceleration of antihydrogen due to Earth's gravitational field. This would be a test of the Weak Equivalence Principle, which states that all bodies fall with the same acceleration independently of their mass and composition. The effect of Earth's gravitational field on antimatter will be determined by measuring the deflection of the path of the antihydrogen from a straight line. The position of the antihydrogen will be found by detecting its annihilation on the surface of a silicon detector. The gravitational measurement in AEgIS will be performed with a gravity module, which includes the silicon detector, an emulsion detector and a scintillating fibre time-of-flight detector. As the experiment attempts to determine the gravitational acceleration with a precision of 1%, a position resolution better than 10 μm is required. Here we present the results of a study of antiproton annihilations in a 3D silicon pixel sensor and compare the results with a previous study using a monolithic active pixel sensor. This work is part of a larger study on different silicon sensor technologies needed for the development of a silicon position detector for the AEgIS experiment. The 3D detector together with its readout electronics have been originally designed for the ATLAS detector at the LHC. The direct annihilation of low energy antiprotons ( ~ 100 keV) takes place in the first few μm of the silicon sensor and we show that the charged products of the annihilation can be detected with the same sensor. The present study also aims to understand the signature of an antiproton annihilation event in segmented silicon detectors and compares it with a GEANT4 simulation model. These results will be used to determine the geometrical and process parameters to be adopted by the silicon annihilation detector to be installed in AEgIS.oai:inspirehep.net:13690422014
spellingShingle Detectors and Experimental Techniques
Gligorova, A
Aghion, S
Belov, A S
Bonomi, G
Bräunig, P
Bremer, Jorg
Brusa, R S
Cabaret, L
Caccia, M
Caravita, R
Castelli, F
Cerchiari, G
Cialdi, S
Comparat, D
Consolati, G
Derking, J H
Da Via, C
Di Domizio, S
Di Noto, L
Doser, M
Dudarev, A
Ferragut, R
Fontana, A
Genova, P
Giammarchi, M
Gninenko, S N
Haider, Shahid
Holmestad, H
Huse, T
Jordan, E
Kaltenbacher, T
Kellerbauer, A
Knecht, A
Krasnicky, D
Lagomarsino, V
Lehner, S
Magnani, A
Malbrunot, C
Mariazzi, S
Matveev, V A
Moia, F
Nellist, C
Nebbia, G
Nedelec, P
Oberthaler, M
Pacifico, N
Petracek, V
Prelz, F
Prevedelli, M
Riccardi, C
Røhne, O
Rotondi, A
Sandaker, H
Subieta Vasquez, M A
Spacek, M
Testera, G
Widmann, E
Yzombard, P
Zavatarelli, S
Zmeskal, J
Comparison of Planar and 3D Silicon Pixel Sensors Used for Detection of Low Energy Antiprotons
title Comparison of Planar and 3D Silicon Pixel Sensors Used for Detection of Low Energy Antiprotons
title_full Comparison of Planar and 3D Silicon Pixel Sensors Used for Detection of Low Energy Antiprotons
title_fullStr Comparison of Planar and 3D Silicon Pixel Sensors Used for Detection of Low Energy Antiprotons
title_full_unstemmed Comparison of Planar and 3D Silicon Pixel Sensors Used for Detection of Low Energy Antiprotons
title_short Comparison of Planar and 3D Silicon Pixel Sensors Used for Detection of Low Energy Antiprotons
title_sort comparison of planar and 3d silicon pixel sensors used for detection of low energy antiprotons
topic Detectors and Experimental Techniques
url https://dx.doi.org/10.1109/TNS.2014.2368591
http://cds.cern.ch/record/2056672
work_keys_str_mv AT gligorovaa comparisonofplanarand3dsiliconpixelsensorsusedfordetectionoflowenergyantiprotons
AT aghions comparisonofplanarand3dsiliconpixelsensorsusedfordetectionoflowenergyantiprotons
AT belovas comparisonofplanarand3dsiliconpixelsensorsusedfordetectionoflowenergyantiprotons
AT bonomig comparisonofplanarand3dsiliconpixelsensorsusedfordetectionoflowenergyantiprotons
AT braunigp comparisonofplanarand3dsiliconpixelsensorsusedfordetectionoflowenergyantiprotons
AT bremerjorg comparisonofplanarand3dsiliconpixelsensorsusedfordetectionoflowenergyantiprotons
AT brusars comparisonofplanarand3dsiliconpixelsensorsusedfordetectionoflowenergyantiprotons
AT cabaretl comparisonofplanarand3dsiliconpixelsensorsusedfordetectionoflowenergyantiprotons
AT cacciam comparisonofplanarand3dsiliconpixelsensorsusedfordetectionoflowenergyantiprotons
AT caravitar comparisonofplanarand3dsiliconpixelsensorsusedfordetectionoflowenergyantiprotons
AT castellif comparisonofplanarand3dsiliconpixelsensorsusedfordetectionoflowenergyantiprotons
AT cerchiarig comparisonofplanarand3dsiliconpixelsensorsusedfordetectionoflowenergyantiprotons
AT cialdis comparisonofplanarand3dsiliconpixelsensorsusedfordetectionoflowenergyantiprotons
AT comparatd comparisonofplanarand3dsiliconpixelsensorsusedfordetectionoflowenergyantiprotons
AT consolatig comparisonofplanarand3dsiliconpixelsensorsusedfordetectionoflowenergyantiprotons
AT derkingjh comparisonofplanarand3dsiliconpixelsensorsusedfordetectionoflowenergyantiprotons
AT daviac comparisonofplanarand3dsiliconpixelsensorsusedfordetectionoflowenergyantiprotons
AT didomizios comparisonofplanarand3dsiliconpixelsensorsusedfordetectionoflowenergyantiprotons
AT dinotol comparisonofplanarand3dsiliconpixelsensorsusedfordetectionoflowenergyantiprotons
AT doserm comparisonofplanarand3dsiliconpixelsensorsusedfordetectionoflowenergyantiprotons
AT dudareva comparisonofplanarand3dsiliconpixelsensorsusedfordetectionoflowenergyantiprotons
AT ferragutr comparisonofplanarand3dsiliconpixelsensorsusedfordetectionoflowenergyantiprotons
AT fontanaa comparisonofplanarand3dsiliconpixelsensorsusedfordetectionoflowenergyantiprotons
AT genovap comparisonofplanarand3dsiliconpixelsensorsusedfordetectionoflowenergyantiprotons
AT giammarchim comparisonofplanarand3dsiliconpixelsensorsusedfordetectionoflowenergyantiprotons
AT gninenkosn comparisonofplanarand3dsiliconpixelsensorsusedfordetectionoflowenergyantiprotons
AT haidershahid comparisonofplanarand3dsiliconpixelsensorsusedfordetectionoflowenergyantiprotons
AT holmestadh comparisonofplanarand3dsiliconpixelsensorsusedfordetectionoflowenergyantiprotons
AT huset comparisonofplanarand3dsiliconpixelsensorsusedfordetectionoflowenergyantiprotons
AT jordane comparisonofplanarand3dsiliconpixelsensorsusedfordetectionoflowenergyantiprotons
AT kaltenbachert comparisonofplanarand3dsiliconpixelsensorsusedfordetectionoflowenergyantiprotons
AT kellerbauera comparisonofplanarand3dsiliconpixelsensorsusedfordetectionoflowenergyantiprotons
AT knechta comparisonofplanarand3dsiliconpixelsensorsusedfordetectionoflowenergyantiprotons
AT krasnickyd comparisonofplanarand3dsiliconpixelsensorsusedfordetectionoflowenergyantiprotons
AT lagomarsinov comparisonofplanarand3dsiliconpixelsensorsusedfordetectionoflowenergyantiprotons
AT lehners comparisonofplanarand3dsiliconpixelsensorsusedfordetectionoflowenergyantiprotons
AT magnania comparisonofplanarand3dsiliconpixelsensorsusedfordetectionoflowenergyantiprotons
AT malbrunotc comparisonofplanarand3dsiliconpixelsensorsusedfordetectionoflowenergyantiprotons
AT mariazzis comparisonofplanarand3dsiliconpixelsensorsusedfordetectionoflowenergyantiprotons
AT matveevva comparisonofplanarand3dsiliconpixelsensorsusedfordetectionoflowenergyantiprotons
AT moiaf comparisonofplanarand3dsiliconpixelsensorsusedfordetectionoflowenergyantiprotons
AT nellistc comparisonofplanarand3dsiliconpixelsensorsusedfordetectionoflowenergyantiprotons
AT nebbiag comparisonofplanarand3dsiliconpixelsensorsusedfordetectionoflowenergyantiprotons
AT nedelecp comparisonofplanarand3dsiliconpixelsensorsusedfordetectionoflowenergyantiprotons
AT oberthalerm comparisonofplanarand3dsiliconpixelsensorsusedfordetectionoflowenergyantiprotons
AT pacificon comparisonofplanarand3dsiliconpixelsensorsusedfordetectionoflowenergyantiprotons
AT petracekv comparisonofplanarand3dsiliconpixelsensorsusedfordetectionoflowenergyantiprotons
AT prelzf comparisonofplanarand3dsiliconpixelsensorsusedfordetectionoflowenergyantiprotons
AT prevedellim comparisonofplanarand3dsiliconpixelsensorsusedfordetectionoflowenergyantiprotons
AT riccardic comparisonofplanarand3dsiliconpixelsensorsusedfordetectionoflowenergyantiprotons
AT røhneo comparisonofplanarand3dsiliconpixelsensorsusedfordetectionoflowenergyantiprotons
AT rotondia comparisonofplanarand3dsiliconpixelsensorsusedfordetectionoflowenergyantiprotons
AT sandakerh comparisonofplanarand3dsiliconpixelsensorsusedfordetectionoflowenergyantiprotons
AT subietavasquezma comparisonofplanarand3dsiliconpixelsensorsusedfordetectionoflowenergyantiprotons
AT spacekm comparisonofplanarand3dsiliconpixelsensorsusedfordetectionoflowenergyantiprotons
AT testerag comparisonofplanarand3dsiliconpixelsensorsusedfordetectionoflowenergyantiprotons
AT widmanne comparisonofplanarand3dsiliconpixelsensorsusedfordetectionoflowenergyantiprotons
AT yzombardp comparisonofplanarand3dsiliconpixelsensorsusedfordetectionoflowenergyantiprotons
AT zavatarellis comparisonofplanarand3dsiliconpixelsensorsusedfordetectionoflowenergyantiprotons
AT zmeskalj comparisonofplanarand3dsiliconpixelsensorsusedfordetectionoflowenergyantiprotons