Cargando…

Protecting a Full-Scale Nb$_3$Sn Magnet with CLIQ, the New Coupling-Loss-Induced Quench System

A new protection system for superconducting magnets called coupling-loss induced quench system (CLIQ) has been recently developed at CERN. Recent tests on Nb-Ti coils have shown that CLIQ is a valid, efficient, and promising method for the protection of high-magnetic-field superconducting magnets. H...

Descripción completa

Detalles Bibliográficos
Autores principales: Ravaioli, E, Bajas, H, Datskov, V I, Desbiolles, V, Feuvrier, J, Kirby, G, Maciejewski, M, Sabbi, G, ten Kate, H H J, Verweij, A P
Lenguaje:eng
Publicado: 2015
Materias:
Acceso en línea:https://dx.doi.org/10.1109/TASC.2014.2364892
http://cds.cern.ch/record/2159021
Descripción
Sumario:A new protection system for superconducting magnets called coupling-loss induced quench system (CLIQ) has been recently developed at CERN. Recent tests on Nb-Ti coils have shown that CLIQ is a valid, efficient, and promising method for the protection of high-magnetic-field superconducting magnets. However, the protection of new-generation Nb_3Sn accelerator magnets is even more challenging due to the much higher stored energy per unit volume and to the significantly larger enthalpy needed to initiate and propagate a normal zone in such coils. Now, the CLIQ system is tested for the first time on a Nb_3Sn magnet in the CERN magnet test facility in order to investigate its performance in practice, thereby validating the method for this type of superconducting magnets as well. Furthermore, we successfully reproduced the electrothermal transients during a CLIQ discharge. Finally, the implementation of various CLIQ-based protection schemes for the full-scale Nb_3Sn quadrupole magnet for the LHC high luminosity upgrade is discussed. The impact of key system parameters on CLIQ performance and the advantages and drawbacks of using multiple CLIQ units on a single magnet are discussed.