Cargando…

The RD50 activity in the context of future pixel detector systems

The CERN/RD50 collaboration is dedicated to the radiation hardening of semiconductor sensors for future super-collider needs. The findings of this collaboration are therefore especially relevant to the pixel devices for the LHC experiment upgrades. A considerable amount of results on the enhancement...

Descripción completa

Detalles Bibliográficos
Autor principal: Casse, G
Lenguaje:eng
Publicado: 2015
Materias:
Acceso en línea:https://dx.doi.org/10.1088/1748-0221/10/05/C05020
http://cds.cern.ch/record/2159049
Descripción
Sumario:The CERN/RD50 collaboration is dedicated to the radiation hardening of semiconductor sensors for future super-collider needs. The findings of this collaboration are therefore especially relevant to the pixel devices for the LHC experiment upgrades. A considerable amount of results on the enhancement of the radiation tolerance of silicon sensors has been found within RD50. The research towards radiation hardening has highlighted, and increased the knowledge on properties of sensors that are relevant to other applications. For example radiation hardening relies on the speed of signal collection in irradiated devices. As a consequence, the methods envisaged for increasing this collection speed turn out to be promising for significantly improving the performance of time resolved, high spatial resolution systems. A new type of device processing strongly emerging for production of future pixel sensor systems is the HV-CMOS technology. The RD50 research methodology provides the tools for characterising the behaviour of the deep collecting electrode (deep n-well) for this type of device after irradiation and the optimal framework for comparing the performance of the new devices with the current state of the art.