Cargando…

ATLAS user analysis on private cloud resources at GoeGrid

User analysis job demands can exceed available computing resources, especially before major conferences. ATLAS physics results can potentially be slowed down due to the lack of resources. For these reasons, cloud research and development activities are now included in the skeleton of the ATLAS compu...

Descripción completa

Detalles Bibliográficos
Autores principales: Glaser, F, Serrano, J Nadal, Grabowski, J, Quadt, A
Lenguaje:eng
Publicado: 2015
Materias:
Acceso en línea:https://dx.doi.org/10.1088/1742-6596/664/2/022020
http://cds.cern.ch/record/2134531
_version_ 1780949899200692224
author Glaser, F
Serrano, J Nadal
Grabowski, J
Quadt, A
author_facet Glaser, F
Serrano, J Nadal
Grabowski, J
Quadt, A
author_sort Glaser, F
collection CERN
description User analysis job demands can exceed available computing resources, especially before major conferences. ATLAS physics results can potentially be slowed down due to the lack of resources. For these reasons, cloud research and development activities are now included in the skeleton of the ATLAS computing model, which has been extended by using resources from commercial and private cloud providers to satisfy the demands. However, most of these activities are focused on Monte-Carlo production jobs, extending the resources at Tier-2. To evaluate the suitability of the cloud-computing model for user analysis jobs, we developed a framework to launch an ATLAS user analysis cluster in a cloud infrastructure on demand and evaluated two solutions. The first solution is entirely integrated in the Grid infrastructure by using the same mechanism, which is already in use at Tier-2: A designated Panda-Queue is monitored and additional worker nodes are launched in a cloud environment and assigned to a corresponding HTCondor queue according to the demand. Thereby, the use of cloud resources is completely transparent to the user. However, using this approach, submitted user analysis jobs can still suffer from a certain delay introduced by waiting time in the queue and the deployed infrastructure lacks customizability. Therefore, our second solution offers the possibility to easily deploy a totally private, customizable analysis cluster on private cloud resources belonging to the university.
id oai-inspirehep.net-1413187
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2015
record_format invenio
spelling oai-inspirehep.net-14131872022-08-10T13:00:48Zdoi:10.1088/1742-6596/664/2/022020http://cds.cern.ch/record/2134531engGlaser, FSerrano, J NadalGrabowski, JQuadt, AATLAS user analysis on private cloud resources at GoeGridComputing and ComputersUser analysis job demands can exceed available computing resources, especially before major conferences. ATLAS physics results can potentially be slowed down due to the lack of resources. For these reasons, cloud research and development activities are now included in the skeleton of the ATLAS computing model, which has been extended by using resources from commercial and private cloud providers to satisfy the demands. However, most of these activities are focused on Monte-Carlo production jobs, extending the resources at Tier-2. To evaluate the suitability of the cloud-computing model for user analysis jobs, we developed a framework to launch an ATLAS user analysis cluster in a cloud infrastructure on demand and evaluated two solutions. The first solution is entirely integrated in the Grid infrastructure by using the same mechanism, which is already in use at Tier-2: A designated Panda-Queue is monitored and additional worker nodes are launched in a cloud environment and assigned to a corresponding HTCondor queue according to the demand. Thereby, the use of cloud resources is completely transparent to the user. However, using this approach, submitted user analysis jobs can still suffer from a certain delay introduced by waiting time in the queue and the deployed infrastructure lacks customizability. Therefore, our second solution offers the possibility to easily deploy a totally private, customizable analysis cluster on private cloud resources belonging to the university.oai:inspirehep.net:14131872015
spellingShingle Computing and Computers
Glaser, F
Serrano, J Nadal
Grabowski, J
Quadt, A
ATLAS user analysis on private cloud resources at GoeGrid
title ATLAS user analysis on private cloud resources at GoeGrid
title_full ATLAS user analysis on private cloud resources at GoeGrid
title_fullStr ATLAS user analysis on private cloud resources at GoeGrid
title_full_unstemmed ATLAS user analysis on private cloud resources at GoeGrid
title_short ATLAS user analysis on private cloud resources at GoeGrid
title_sort atlas user analysis on private cloud resources at goegrid
topic Computing and Computers
url https://dx.doi.org/10.1088/1742-6596/664/2/022020
http://cds.cern.ch/record/2134531
work_keys_str_mv AT glaserf atlasuseranalysisonprivatecloudresourcesatgoegrid
AT serranojnadal atlasuseranalysisonprivatecloudresourcesatgoegrid
AT grabowskij atlasuseranalysisonprivatecloudresourcesatgoegrid
AT quadta atlasuseranalysisonprivatecloudresourcesatgoegrid