Cargando…
Scale out databases for CERN use cases
Data generation rates are expected to grow very fast for some database workloads going into LHC run 2 and beyond. In particular this is expected for data coming from controls, logging and monitoring systems. Storing, administering and accessing big data sets in a relational database system can quick...
Autores principales: | Baranowski, Zbigniew, Grzybek, Maciej, Canali, Luca, Garcia, Daniel Lanza, Surdy, Kacper |
---|---|
Lenguaje: | eng |
Publicado: |
2015
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1088/1742-6596/664/4/042002 http://cds.cern.ch/record/2134552 |
Ejemplares similares
-
Integration of Oracle and Hadoop: Hybrid databases affordable at scale
por: Canali, L, et al.
Publicado: (2017) -
Evolution of Database Replication Technologies for WLCG
por: Baranowski, Zbigniew, et al.
Publicado: (2015) -
Hadoop and friends - first experience at CERN with a new platform for high throughput analysis steps
por: Duellmann, Dirk, et al.
Publicado: (2017) -
Apache Flink: Distributed Stream Data Processing
por: Jacobs, Kevin, et al.
Publicado: (2016) -
HBase - data storing & access (hands on) part 1
por: SURDY, Kacper, et al.
Publicado: (2015)