Cargando…
Cryogenic temperature monitoring in superconducting power transmission line at CERN with hybrid multi-point and distributed fiber optic sensors
Distributed and multi-point fiber-optic based measurements of cryogenic temperature down to 30 K are presented. Measurements have been performed along the cryostat of a superconducting power transmission line, which is currently being tested at CERN over a length of about 20 m. Multi-point measureme...
Autores principales: | , , , , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2015
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1117/12.2194748 http://cds.cern.ch/record/2159202 |
Sumario: | Distributed and multi-point fiber-optic based measurements of cryogenic temperature down to 30 K are presented. Measurements have been performed along the cryostat of a superconducting power transmission line, which is currently being tested at CERN over a length of about 20 m. Multi-point measurements were based on two kinds of FBG with different coatings (epoxy and PMMA). In addition, distributed measurements exploited optical frequency-domain reflectometry to analyze the Rayleigh scattering along two concatenated fibers with different coatings (acrylate and polyimmide). Results confirm the viability of these approaches to monitor cryogenic temperatures along a superconducting transmission line.© (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only. |
---|