Cargando…
Preservation of the D0 W mass measurement to incorporate future PDF and physics models
The D0 experiment at the Fermilab Tevatron Collider provided in recent years one of the most accurate measurements of the W boson mass. The precise knowledge of the W boson mass, to- gether with the mass of the Higgs Boson and the top quark, provides one of the most crucial tests of the Standard Mod...
Autores principales: | , |
---|---|
Lenguaje: | eng |
Publicado: |
SISSA
2015
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.22323/1.234.0339 http://cds.cern.ch/record/2159233 |
Sumario: | The D0 experiment at the Fermilab Tevatron Collider provided in recent years one of the most accurate measurements of the W boson mass. The precise knowledge of the W boson mass, to- gether with the mass of the Higgs Boson and the top quark, provides one of the most crucial tests of the Standard Model of particle physics. The uncertainties of this measurement are currently dominated by the limited knowledge of the parton density functions, which will improve in future years. Therefore, a dedicated effort is being made by the D0 Collaboration to preserve the W boson mass analysis for a future reevaluation with improved proton descriptions and other im- provements in the modeling of W boson production and decay. We give an overview of this effort and discuss the underlying technical infrastructure. In addition, we also present a reevaluation of the W boson mass measurement based on R Ldt = 4 : 3 fb... |
---|