Cargando…
Characterization of the Radiation Field in the FCC-hh Detector
As part of the post-LHC high-energy program, a study is ongoing to design a new 100 km long hadron collider, which is expected to operate at a centre-of-mass energy of 100 TeV and to accumulate up to 30 ab−1, with a peak instantaneous luminosity that could reach 30 1034cm−2s−1. In this context, the...
Autores principales: | , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2016
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.18429/JACoW-IPAC2016-TUPMW005 http://cds.cern.ch/record/2207360 |
Sumario: | As part of the post-LHC high-energy program, a study is ongoing to design a new 100 km long hadron collider, which is expected to operate at a centre-of-mass energy of 100 TeV and to accumulate up to 30 ab−1, with a peak instantaneous luminosity that could reach 30 1034cm−2s−1. In this context, the evaluation of the radiation load on the detector is a key step for the choice of materials and technologies. In this contribution, a first detector concept will be presented. At the same time, fluence distributions, relevant for detector occupancy, and accumulated damage on materials and electronics will be shown. The effectiveness of a possible shielding configuration, intended to minimise the background in the muon chambers and tracking stations, will be presented. |
---|