Cargando…

Beam Offset Stabilization Techniques for the LHC Collision Points

Maintaining head-on collisions over many hours is an important aspect of optimizing the performance of a collider. For current LHC operation where the beam optics is fixed during periods of colliding beam, mainly ground motion induced perturbations have to be compensated. The situation will become s...

Descripción completa

Detalles Bibliográficos
Autores principales: Gorzawski, Arkadiusz, Jacobsson, Richard, Wenninger, Jorg
Lenguaje:eng
Publicado: 2016
Materias:
Acceso en línea:https://dx.doi.org/10.18429/JACoW-IPAC2016-TUPMW012
http://cds.cern.ch/record/2207365
Descripción
Sumario:Maintaining head-on collisions over many hours is an important aspect of optimizing the performance of a collider. For current LHC operation where the beam optics is fixed during periods of colliding beam, mainly ground motion induced perturbations have to be compensated. The situation will become significantly more complex when luminosity leveling will be applied following the LHC luminosity upgrades. During β^{*} leveling the optics in the interaction region changes significantly, feed-downs from quadrupole misalignment may induce significant orbit changes that may lead to beam offsets at the collision points. Such beam offsets induce a loss of luminosity and reduce the stability margins for collective effects that is provided by head-on beam-beam. It is therefore essential that the beam offsets at the collision points are minimized during the leveling process. This paper will review sources and mitigation techniques for the orbit perturbation at the collision points during β^{*} leveling, and present results of experiments performed at the LHC to mitigate and compensate such offsets.