Cargando…

Radiation Load Optimization in the Final Focus System of FCC-hh

With a center-of-mass energy of up to 100 TeV, FCC-hh will produce highly energetic collision debris at the Interaction Point (IP). Protecting the final focus quadrupoles from this radiation is challenging, since the required amount of shielding placed inside the magnets will reduce the free apertur...

Descripción completa

Detalles Bibliográficos
Autores principales: Martin, Roman, Besana, Maria Ilaria, Cerutti, Francesco, Tomás, Rogelio
Lenguaje:eng
Publicado: 2016
Materias:
Acceso en línea:https://dx.doi.org/10.18429/JACoW-IPAC2016-TUPMW018
http://cds.cern.ch/record/2207371
Descripción
Sumario:With a center-of-mass energy of up to 100 TeV, FCC-hh will produce highly energetic collision debris at the Interaction Point (IP). Protecting the final focus quadrupoles from this radiation is challenging, since the required amount of shielding placed inside the magnets will reduce the free aperture, thereby limiting the β^{*} reach and luminosity. Hence, radiation mitigation strategies that make best use of the available aperture are required. In this paper, we study the possibility to split the first quadrupole Q1 into two quadrupoles with individual apertures, in order to distribute the radiation load more evenly and reduce the peak dose.