Cargando…

Validation of Simulation Tools for Fast Beam Failure Studies in the LHC

The LHC collimation system protects passively the most sensitive machine equipment against beam losses. In particular, collimators are the last line of defense in case of single-turn failures that cannot be caught by the standard interlock system. The collimator settings are conceived to protect the...

Descripción completa

Detalles Bibliográficos
Autores principales: Quaranta, Elena, Bracco, Chiara, Bruce, Roderik, Redaelli, Stefano
Lenguaje:eng
Publicado: 2016
Materias:
Acceso en línea:https://dx.doi.org/10.18429/JACoW-IPAC2016-WEPMW033
http://cds.cern.ch/record/2207410
Descripción
Sumario:The LHC collimation system protects passively the most sensitive machine equipment against beam losses. In particular, collimators are the last line of defense in case of single-turn failures that cannot be caught by the standard interlock system. The collimator settings are conceived to protect the machine even for very rare events, like beam abort failures with a full machine. Collimator settings are established in simulations through a dedicated tracking setup but also empirically validated by beam measurements at low intensities. A benchmark of simulations is essential for reliably estimating the response of the system for future machine configurations and beam parameters. In the paper, results are presented of tracking simulations for different optics deployed in the LHC Run II at 6.5 TeV and compared with data.