Cargando…

A Micrometric Positioning Sensor for Laser-Based Alignment

The Compact Linear Collider requires 10 μm accuracy over 200m for the alignment of its components. Since current techniques based on stretched wire or water level are difficult to implement, other options are under study. We propose a laser alignment system using positioning sensors made of camera/s...

Descripción completa

Detalles Bibliográficos
Autores principales: Stern, Guillaume, Geiger, Alain, Guillaume, Sébastien, Mainaud Durand, Helene, Piedigrossi, Didier, Sosin, Mateusz
Lenguaje:eng
Publicado: 2016
Materias:
Acceso en línea:https://dx.doi.org/10.18429/JACoW-IPAC2016-WEPOR017
http://cds.cern.ch/record/2207425
Descripción
Sumario:The Compact Linear Collider requires 10 μm accuracy over 200m for the alignment of its components. Since current techniques based on stretched wire or water level are difficult to implement, other options are under study. We propose a laser alignment system using positioning sensors made of camera/shutter assemblies. The goal is to implement such a positioning sensor. The corresponding studies comprise design and calibration as well as investigations of measurement accuracy and precision. On the one hand, we describe mathematically the laser beam propagation, its interaction with the shutter and image processing. On the other hand, we present experiments done with the prototype of a positioning sensor. As a result, we give practical suggestions to build the positioning sensors and we describe a calibration protocol to be applied to all sensors before measuring. In addition, we deliver estimates for measurement accuracy and precision. Our work provides the first steps towards a full alignment system.