Cargando…

Analysis and Testing of a New RF Bridge Concept as an Alternative to Conventional Sliding RF Fingers in LHC

RF fingers are used as transition elements in beam vacuum line interconnections to ensure the continuity of the vacuum system wall within acceptable beam stability requirements. The RF fingers must absorb and compensate longitudinal, angular and transversal misalignments due to both thermal effects,...

Descripción completa

Detalles Bibliográficos
Autores principales: Perez Espinos, Jaime, Garion, Cedric
Lenguaje:eng
Publicado: 2016
Materias:
Acceso en línea:https://dx.doi.org/10.18429/JACoW-IPAC2016-THPMY006
http://cds.cern.ch/record/2207465
_version_ 1780951813132910592
author Perez Espinos, Jaime
Garion, Cedric
author_facet Perez Espinos, Jaime
Garion, Cedric
author_sort Perez Espinos, Jaime
collection CERN
description RF fingers are used as transition elements in beam vacuum line interconnections to ensure the continuity of the vacuum system wall within acceptable beam stability requirements. The RF fingers must absorb and compensate longitudinal, angular and transversal misalignments due to both thermal effects, during bake-out or cooldown processes, and mechanical movements during assembly, alignment, commissioning and operation phases. The new RF bridge concept is based on a deformable thin-walled structure in copper beryllium, which fulfils the above requirements without the need of sliding contacts. Mechanical tests have been carried out to characterize the response and the lifetime of such a component under different loading conditions. In addition, finite element models have been used to estimate the behaviour. The influence of different material grades and heat treatments on the reliability is presented. The paper includes a detailed analysis of the prototyping and testing phases that have led to a final design of the system, qualified on a dedicated test bench, for the collimator vacuum modules of LHC.
id oai-inspirehep.net-1470586
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2016
record_format invenio
spelling oai-inspirehep.net-14705862022-08-10T12:48:20Zdoi:10.18429/JACoW-IPAC2016-THPMY006http://cds.cern.ch/record/2207465engPerez Espinos, JaimeGarion, CedricAnalysis and Testing of a New RF Bridge Concept as an Alternative to Conventional Sliding RF Fingers in LHCAccelerators and Storage RingsRF fingers are used as transition elements in beam vacuum line interconnections to ensure the continuity of the vacuum system wall within acceptable beam stability requirements. The RF fingers must absorb and compensate longitudinal, angular and transversal misalignments due to both thermal effects, during bake-out or cooldown processes, and mechanical movements during assembly, alignment, commissioning and operation phases. The new RF bridge concept is based on a deformable thin-walled structure in copper beryllium, which fulfils the above requirements without the need of sliding contacts. Mechanical tests have been carried out to characterize the response and the lifetime of such a component under different loading conditions. In addition, finite element models have been used to estimate the behaviour. The influence of different material grades and heat treatments on the reliability is presented. The paper includes a detailed analysis of the prototyping and testing phases that have led to a final design of the system, qualified on a dedicated test bench, for the collimator vacuum modules of LHC.CERN-ACC-2016-158oai:inspirehep.net:14705862016
spellingShingle Accelerators and Storage Rings
Perez Espinos, Jaime
Garion, Cedric
Analysis and Testing of a New RF Bridge Concept as an Alternative to Conventional Sliding RF Fingers in LHC
title Analysis and Testing of a New RF Bridge Concept as an Alternative to Conventional Sliding RF Fingers in LHC
title_full Analysis and Testing of a New RF Bridge Concept as an Alternative to Conventional Sliding RF Fingers in LHC
title_fullStr Analysis and Testing of a New RF Bridge Concept as an Alternative to Conventional Sliding RF Fingers in LHC
title_full_unstemmed Analysis and Testing of a New RF Bridge Concept as an Alternative to Conventional Sliding RF Fingers in LHC
title_short Analysis and Testing of a New RF Bridge Concept as an Alternative to Conventional Sliding RF Fingers in LHC
title_sort analysis and testing of a new rf bridge concept as an alternative to conventional sliding rf fingers in lhc
topic Accelerators and Storage Rings
url https://dx.doi.org/10.18429/JACoW-IPAC2016-THPMY006
http://cds.cern.ch/record/2207465
work_keys_str_mv AT perezespinosjaime analysisandtestingofanewrfbridgeconceptasanalternativetoconventionalslidingrffingersinlhc
AT garioncedric analysisandtestingofanewrfbridgeconceptasanalternativetoconventionalslidingrffingersinlhc