Cargando…
Beam-Loading Effect on Breakdown Rate in High-Gradient Accelerating Structures
The Compact Linear Collider (CLIC) study for a future electron-positron collider with a center-of-mass energy up to 3 TeV aims for an accelerating gradient of 100 MV/m. The gradient is limited by RF breakdowns, and the luminosity requirements impose a limit on the admissible RF breakdown rate. RF te...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2016
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.18429/JACoW-IPAC2016-THPOR031 http://cds.cern.ch/record/2207476 |
Sumario: | The Compact Linear Collider (CLIC) study for a future electron-positron collider with a center-of-mass energy up to 3 TeV aims for an accelerating gradient of 100 MV/m. The gradient is limited by RF breakdowns, and the luminosity requirements impose a limit on the admissible RF breakdown rate. RF testing of 12 GHz structure prototypes has shown that gradients in excess of 100 MV/m can be reached with the required breakdown rate. However at CLIC, the structures will be operated with significant beam-loading, modifying the field distribution inside. The effect of the beam-loading must be well understood but has not been previously measured. The commissioning and operation of an experiment to measure the effect of beam-loading on breakdown rate and the measurement results are presented. |
---|