Cargando…
Bayesian Analysis Toolkit in Searches
The Bayesian Analysis Toolkit, a software package for data analysis based onBayes' theorem, is introduced. This toolkit takes advantage of Markov ChainMonte Carlo to find the full posterior probability distributions. The tool caneasily be used for parameter estimation, limit setting and error p...
Autores principales: | , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
CERN
2011
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.5170/CERN-2011-006.209 http://cds.cern.ch/record/2203253 |
_version_ | 1780951361102282752 |
---|---|
author | Beaujean, Frederik Caldwell, Allen Kollár, Daniel Kröninger, Kevin Pashapour, Shabnaz |
author_facet | Beaujean, Frederik Caldwell, Allen Kollár, Daniel Kröninger, Kevin Pashapour, Shabnaz |
author_sort | Beaujean, Frederik |
collection | CERN |
description | The Bayesian Analysis Toolkit, a software package for data analysis based onBayes' theorem, is introduced. This toolkit takes advantage of Markov ChainMonte Carlo to find the full posterior probability distributions. The tool caneasily be used for parameter estimation, limit setting and error propagation.Model comparison and goodness-of-fit estimation are realized in the packagethrough well-established methods. In addition to a brief description of theBayesian Analysis Toolkit, the use of this tool in searches is described in theexample of Banff Challenge 2a problem 1. |
id | oai-inspirehep.net-1478288 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2011 |
publisher | CERN |
record_format | invenio |
spelling | oai-inspirehep.net-14782882019-09-30T06:29:59Zdoi:10.5170/CERN-2011-006.209http://cds.cern.ch/record/2203253engBeaujean, FrederikCaldwell, AllenKollár, DanielKröninger, KevinPashapour, ShabnazBayesian Analysis Toolkit in SearchesParticle Physics - ExperimentDetectors and Experimental TechniquesThe Bayesian Analysis Toolkit, a software package for data analysis based onBayes' theorem, is introduced. This toolkit takes advantage of Markov ChainMonte Carlo to find the full posterior probability distributions. The tool caneasily be used for parameter estimation, limit setting and error propagation.Model comparison and goodness-of-fit estimation are realized in the packagethrough well-established methods. In addition to a brief description of theBayesian Analysis Toolkit, the use of this tool in searches is described in theexample of Banff Challenge 2a problem 1.CERNoai:inspirehep.net:14782882011 |
spellingShingle | Particle Physics - Experiment Detectors and Experimental Techniques Beaujean, Frederik Caldwell, Allen Kollár, Daniel Kröninger, Kevin Pashapour, Shabnaz Bayesian Analysis Toolkit in Searches |
title | Bayesian Analysis Toolkit in Searches |
title_full | Bayesian Analysis Toolkit in Searches |
title_fullStr | Bayesian Analysis Toolkit in Searches |
title_full_unstemmed | Bayesian Analysis Toolkit in Searches |
title_short | Bayesian Analysis Toolkit in Searches |
title_sort | bayesian analysis toolkit in searches |
topic | Particle Physics - Experiment Detectors and Experimental Techniques |
url | https://dx.doi.org/10.5170/CERN-2011-006.209 http://cds.cern.ch/record/2203253 |
work_keys_str_mv | AT beaujeanfrederik bayesiananalysistoolkitinsearches AT caldwellallen bayesiananalysistoolkitinsearches AT kollardaniel bayesiananalysistoolkitinsearches AT kroningerkevin bayesiananalysistoolkitinsearches AT pashapourshabnaz bayesiananalysistoolkitinsearches |