Cargando…
A scintillating fibre beam profile monitor for the experimental areas of the SPS at CERN
The CERN Super Proton Synchrotron (SPS) delivers a wide spectrum of particle beams (hadrons, leptons and heavy ions) that can vary greatly in momentum and intensity. The profile and position of these beams are measured using particle detectors. However, the current systems show several problems that...
Autores principales: | , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2016
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1088/1742-6596/763/1/012012 http://cds.cern.ch/record/2265883 |
Sumario: | The CERN Super Proton Synchrotron (SPS) delivers a wide spectrum of particle beams (hadrons, leptons and heavy ions) that can vary greatly in momentum and intensity. The profile and position of these beams are measured using particle detectors. However, the current systems show several problems that limit the quality of such monitoring. We have researched a new monitor made of scintillating fibres read-out with Silicon Photomultipliers (SiPM), which has the potential to perform better in terms of material budget, range of intensities measured and available detector size. In addition, it also has particle counting capabilities, extending its use to spectrometry or Time-Of-Flight measurements. Its radiation hardness is good to guarantee years of functioning. We have successfully tested a first prototype of this detector with different particle beams at CERN, giving accurate profile measurements over a wide range of energies and intensities. It only showed problems during operation with lead ion beams, believed to come from crosstalk between the fibres. Investigations are ongoing on alternative photodetectors, the electronics readout and solutions to the fibre crosstalk. |
---|