Cargando…

FoCal – A high granularity electromagnetic calorimeter for forward direct photon measurements

The measurement of direct photon production at forward rapidity (y∼3−5) at the LHC provides access to the structure of protons and nuclei at very small values of fractional momentum (x∼10−5) . FoCal, an extremely-high-granularity Forward Calorimeter covering 3.3<η<5.3 is proposed as a detector...

Descripción completa

Detalles Bibliográficos
Autor principal: Zhang, C
Lenguaje:eng
Publicado: 2017
Materias:
Acceso en línea:https://dx.doi.org/10.1016/j.nima.2016.06.075
http://cds.cern.ch/record/2291113
Descripción
Sumario:The measurement of direct photon production at forward rapidity (y∼3−5) at the LHC provides access to the structure of protons and nuclei at very small values of fractional momentum (x∼10−5) . FoCal, an extremely-high-granularity Forward Calorimeter covering 3.3<η<5.3 is proposed as a detector upgrade to the ALICE experiment. To facilitate the design of the upgrade and to perform generic R&D; necessary for such a novel calorimeter, a compact high-granularity electromagnetic calorimeter prototype has been built. The corresponding R&D; studies are the focus of this paper. The prototype is a Si/W sampling calorimeter. It was instrumented with 24 layers of Monolithic Active Pixel Sensors, a total of 39 M pixels. We report on performance studies of the prototype with test beams at DESY and CERN in a broad energy range. The results of the measurements demonstrate a very small Molière radius (∼11mm) and good linearity of the response. Unique results on the detailed lateral shower shape, which are crucial for the two-shower separation capabilities, are presented. We compare the measurements to GEANT-based MC simulations, which additionally include a modeling of charge diffusion. The studies demonstrate the feasibility of this high-granularity technology for use in the proposed detector upgrade. They also show the extremely high potential of this technology for future calorimeter development.