Cargando…
10-Gb/s Distributed Amplifier-Based VCSEL Driver IC With ESD Protection in 130-nm CMOS
Abstract: This paper presents a low-power 10-Gb/s vertical cavity surface emitting laser (VCSEL) driver integrated circuit (IC) with electrostatic discharge (ESD) protection in the 130-nm CMOS technology. A distributed amplifier (DA)-based modulator is proposed to boost the driver bandwidth. It empl...
Autores principales: | , , , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2016
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1109/TVLSI.2015.2507438 http://cds.cern.ch/record/2268401 |
_version_ | 1780954715240005632 |
---|---|
author | Zhang, Tao Gui, Ping Chakraborty, Sudipto Liu, Tianwei Wu, Guoying Moreira, Paulo Tavernier, Filip |
author_facet | Zhang, Tao Gui, Ping Chakraborty, Sudipto Liu, Tianwei Wu, Guoying Moreira, Paulo Tavernier, Filip |
author_sort | Zhang, Tao |
collection | CERN |
description | Abstract: This paper presents a low-power 10-Gb/s vertical cavity surface emitting laser (VCSEL) driver integrated circuit (IC) with electrostatic discharge (ESD) protection in the 130-nm CMOS technology. A distributed amplifier (DA)-based modulator is proposed to boost the driver bandwidth. It employs artificial transmission lines to cancel the device parasitic capacitances of the driver. A distributed ESD protection technique is applied to equalize the group delay of the DA to optimize the jitter performance. To minimize the silicon area, the optimal number of DA taps in the proposed modulator has been derived. To compensate for the capacitive load and the channel losses at the output of the driver, a frequency-domain preemphasis scheme is proposed. The proposed DA modulator occupies an area of 0.69 $mm^2$, and the entire driver IC has a die size of 2 mm×2 mm, including the pads. Both electrical and optical tests have been carried out to characterize the performance of the proposed VCSEL driver IC. Measurements at a data rate of 10-Gb/s demonstrate a typical power consumption of 85 mW under a single 2.5 V supply voltage (49 mW, if separate 1.2 and 2.5 V supplies are used) and an rms jitter of 0.63 and 1.12 ps for the electrical test and optical test, respectively. |
id | oai-inspirehep.net-1603398 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2016 |
record_format | invenio |
spelling | oai-inspirehep.net-16033982019-09-30T06:29:59Zdoi:10.1109/TVLSI.2015.2507438http://cds.cern.ch/record/2268401engZhang, TaoGui, PingChakraborty, SudiptoLiu, TianweiWu, GuoyingMoreira, PauloTavernier, Filip10-Gb/s Distributed Amplifier-Based VCSEL Driver IC With ESD Protection in 130-nm CMOSDetectors and Experimental TechniquesAbstract: This paper presents a low-power 10-Gb/s vertical cavity surface emitting laser (VCSEL) driver integrated circuit (IC) with electrostatic discharge (ESD) protection in the 130-nm CMOS technology. A distributed amplifier (DA)-based modulator is proposed to boost the driver bandwidth. It employs artificial transmission lines to cancel the device parasitic capacitances of the driver. A distributed ESD protection technique is applied to equalize the group delay of the DA to optimize the jitter performance. To minimize the silicon area, the optimal number of DA taps in the proposed modulator has been derived. To compensate for the capacitive load and the channel losses at the output of the driver, a frequency-domain preemphasis scheme is proposed. The proposed DA modulator occupies an area of 0.69 $mm^2$, and the entire driver IC has a die size of 2 mm×2 mm, including the pads. Both electrical and optical tests have been carried out to characterize the performance of the proposed VCSEL driver IC. Measurements at a data rate of 10-Gb/s demonstrate a typical power consumption of 85 mW under a single 2.5 V supply voltage (49 mW, if separate 1.2 and 2.5 V supplies are used) and an rms jitter of 0.63 and 1.12 ps for the electrical test and optical test, respectively.oai:inspirehep.net:16033982016 |
spellingShingle | Detectors and Experimental Techniques Zhang, Tao Gui, Ping Chakraborty, Sudipto Liu, Tianwei Wu, Guoying Moreira, Paulo Tavernier, Filip 10-Gb/s Distributed Amplifier-Based VCSEL Driver IC With ESD Protection in 130-nm CMOS |
title | 10-Gb/s Distributed Amplifier-Based VCSEL Driver IC With ESD Protection in 130-nm CMOS |
title_full | 10-Gb/s Distributed Amplifier-Based VCSEL Driver IC With ESD Protection in 130-nm CMOS |
title_fullStr | 10-Gb/s Distributed Amplifier-Based VCSEL Driver IC With ESD Protection in 130-nm CMOS |
title_full_unstemmed | 10-Gb/s Distributed Amplifier-Based VCSEL Driver IC With ESD Protection in 130-nm CMOS |
title_short | 10-Gb/s Distributed Amplifier-Based VCSEL Driver IC With ESD Protection in 130-nm CMOS |
title_sort | 10-gb/s distributed amplifier-based vcsel driver ic with esd protection in 130-nm cmos |
topic | Detectors and Experimental Techniques |
url | https://dx.doi.org/10.1109/TVLSI.2015.2507438 http://cds.cern.ch/record/2268401 |
work_keys_str_mv | AT zhangtao 10gbsdistributedamplifierbasedvcseldrivericwithesdprotectionin130nmcmos AT guiping 10gbsdistributedamplifierbasedvcseldrivericwithesdprotectionin130nmcmos AT chakrabortysudipto 10gbsdistributedamplifierbasedvcseldrivericwithesdprotectionin130nmcmos AT liutianwei 10gbsdistributedamplifierbasedvcseldrivericwithesdprotectionin130nmcmos AT wuguoying 10gbsdistributedamplifierbasedvcseldrivericwithesdprotectionin130nmcmos AT moreirapaulo 10gbsdistributedamplifierbasedvcseldrivericwithesdprotectionin130nmcmos AT tavernierfilip 10gbsdistributedamplifierbasedvcseldrivericwithesdprotectionin130nmcmos |