Cargando…

Investigation and performance assessment of hydraulic schemes for the beam screen cooling for the Future Circular Collider of hadron beams

The international study at CERN of a possible future circular collider (FCC) considers an option for a very high energy hadron-hadron collider located in a quasi-circular underground tunnel of about 100 km of length. The technical segmentation of the collider foresees continuously cooled sections of...

Descripción completa

Detalles Bibliográficos
Autores principales: Kotnig, Claudio, Tavian, L, Brenn, G
Lenguaje:eng
Publicado: 2017
Materias:
Acceso en línea:https://dx.doi.org/10.1088/1757-899X/171/1/012006
http://cds.cern.ch/record/2293238
Descripción
Sumario:The international study at CERN of a possible future circular collider (FCC) considers an option for a very high energy hadron-hadron collider located in a quasi-circular underground tunnel of about 100 km of length. The technical segmentation of the collider foresees continuously cooled sections of up to 10.4 km; throughout the entire section length, more than 600 kW of heat mainly generated by the beam synchrotron radiation must be removed from the beam screen circuits at a mean temperature of 50 K. The cryogenic system has to be designed to extract the heat load dependably with a high-efficiency refrigeration process. Reliable and efficient cooling of the FCC beam screen in all possible operational modes requires a solid basic design as well as well-matched components in the final arrangement. After illustrating the decision making process leading to the selection of an elementary hydraulic scheme, this paper presents preliminary conceptual designs of the FCC beam screen cooling system and compares the different schemes regarding the technical advantages and disadvantages with respect to the exergetic efficiency.