Cargando…
A versatile multi-objective FLUKA optimization using Genetic Algorithms
Quite often Monte Carlo simulation studies require a multi phase-space optimization, a complicated task, heavily relying on the operator experience and judgment. Examples of such calculations are shielding calculations with stringent conditions in the cost, in residual dose, material properties and...
Autores principales: | , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2017
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1051/epjconf/201715306004 http://cds.cern.ch/record/2314948 |
_version_ | 1780958179397468160 |
---|---|
author | Vlachoudis, Vasilis Antoniucci, Guido Arnau Mathot, Serge Kozlowska, Wioletta Sandra Vretenar, Maurizio |
author_facet | Vlachoudis, Vasilis Antoniucci, Guido Arnau Mathot, Serge Kozlowska, Wioletta Sandra Vretenar, Maurizio |
author_sort | Vlachoudis, Vasilis |
collection | CERN |
description | Quite often Monte Carlo simulation studies require a multi phase-space optimization, a complicated task, heavily relying on the operator experience and judgment. Examples of such calculations are shielding calculations with stringent conditions in the cost, in residual dose, material properties and space available, or in the medical field optimizing the dose delivered to a patient under a hadron treatment. The present paper describes our implementation inside flair[1] the advanced user interface of FLUKA[2,3] of a multi-objective Genetic Algorithm[Erreur ! Source du renvoi introuvable.] to facilitate the search for the optimum solution. |
id | oai-inspirehep.net-1625949 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2017 |
record_format | invenio |
spelling | oai-inspirehep.net-16259492019-09-30T06:29:59Zdoi:10.1051/epjconf/201715306004http://cds.cern.ch/record/2314948engVlachoudis, VasilisAntoniucci, Guido ArnauMathot, SergeKozlowska, Wioletta SandraVretenar, MaurizioA versatile multi-objective FLUKA optimization using Genetic AlgorithmsAccelerators and Storage RingsQuite often Monte Carlo simulation studies require a multi phase-space optimization, a complicated task, heavily relying on the operator experience and judgment. Examples of such calculations are shielding calculations with stringent conditions in the cost, in residual dose, material properties and space available, or in the medical field optimizing the dose delivered to a patient under a hadron treatment. The present paper describes our implementation inside flair[1] the advanced user interface of FLUKA[2,3] of a multi-objective Genetic Algorithm[Erreur ! Source du renvoi introuvable.] to facilitate the search for the optimum solution.oai:inspirehep.net:16259492017 |
spellingShingle | Accelerators and Storage Rings Vlachoudis, Vasilis Antoniucci, Guido Arnau Mathot, Serge Kozlowska, Wioletta Sandra Vretenar, Maurizio A versatile multi-objective FLUKA optimization using Genetic Algorithms |
title | A versatile multi-objective FLUKA optimization using Genetic Algorithms |
title_full | A versatile multi-objective FLUKA optimization using Genetic Algorithms |
title_fullStr | A versatile multi-objective FLUKA optimization using Genetic Algorithms |
title_full_unstemmed | A versatile multi-objective FLUKA optimization using Genetic Algorithms |
title_short | A versatile multi-objective FLUKA optimization using Genetic Algorithms |
title_sort | versatile multi-objective fluka optimization using genetic algorithms |
topic | Accelerators and Storage Rings |
url | https://dx.doi.org/10.1051/epjconf/201715306004 http://cds.cern.ch/record/2314948 |
work_keys_str_mv | AT vlachoudisvasilis aversatilemultiobjectiveflukaoptimizationusinggeneticalgorithms AT antoniucciguidoarnau aversatilemultiobjectiveflukaoptimizationusinggeneticalgorithms AT mathotserge aversatilemultiobjectiveflukaoptimizationusinggeneticalgorithms AT kozlowskawiolettasandra aversatilemultiobjectiveflukaoptimizationusinggeneticalgorithms AT vretenarmaurizio aversatilemultiobjectiveflukaoptimizationusinggeneticalgorithms AT vlachoudisvasilis versatilemultiobjectiveflukaoptimizationusinggeneticalgorithms AT antoniucciguidoarnau versatilemultiobjectiveflukaoptimizationusinggeneticalgorithms AT mathotserge versatilemultiobjectiveflukaoptimizationusinggeneticalgorithms AT kozlowskawiolettasandra versatilemultiobjectiveflukaoptimizationusinggeneticalgorithms AT vretenarmaurizio versatilemultiobjectiveflukaoptimizationusinggeneticalgorithms |