Cargando…
Studies of Longitudinal Beam Stability in CERN PS Booster After Upgrade
The CERN PS Booster, comprised of four superposed rings, is the first synchrotron in the LHC proton injection chain. In 2021, after major upgrades, the injection and extraction beam energies, as well as the acceleration rate, will be increased. The required beam intensities should be a factor of two...
Autores principales: | , , |
---|---|
Lenguaje: | eng |
Publicado: |
2017
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.18429/JACoW-IPAC2017-THPVA023 http://cds.cern.ch/record/2289641 |
Sumario: | The CERN PS Booster, comprised of four superposed rings, is the first synchrotron in the LHC proton injection chain. In 2021, after major upgrades, the injection and extraction beam energies, as well as the acceleration rate, will be increased. The required beam intensities should be a factor of two higher for nominal LHC and fixed-target beams, and the currently used narrow-band ferrite systems will be replaced by broad-band Finemet cavities in all four rings. Future beam stability was investigated using simulations with the Beam Longitudinal Dynamics (BLonD) code. The simulation results for existing situation were compared with beam measurements and gave a good agreement. An accurate impedance model, together with a careful estimation of the longitudinal space charge, was used in simulations of the future acceleration cycle in single and double RF, with phase and radial loops and controlled longitudinal emittance blow-up. Since the beam is not ultra-relativistic and fills the whole ring (h=1), the front and multi-turn back wakes were taken into account, as well as the RF feedbacks which reduce the effect of the Finemet impedance at the revolution frequency harmonics. |
---|