Cargando…
Assessment of Beam Impedance for the CERN-PS Booster Wire Scanner
It is well known that performance of accelerators critically depends on the interaction of high intensity beams with the surrounding structures. As a result of these beam interactions, it is required at CERN to characterize the beam coupling impedance of each new machine element that is to be instal...
Autores principales: | , , |
---|---|
Lenguaje: | eng |
Publicado: |
2017
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.18429/JACoW-IPAC2017-WEPIK096 http://cds.cern.ch/record/2289464 |
Sumario: | It is well known that performance of accelerators critically depends on the interaction of high intensity beams with the surrounding structures. As a result of these beam interactions, it is required at CERN to characterize the beam coupling impedance of each new machine element that is to be installed in the accelerator ring. In the framework of the LIU (LHC Injectors Upgrade) project, a new design of rotational wire scanner to be used in the PS Booster is currently under development. As an intermediate step, the prototype of this wire scanner was evaluated with respect to its longitudinal beam coupling impedance. Depending on the performance of this machine element, it is planned to replace existing wire scanners in other machines at CERN (e.g. PS-Booster, PS and SPS) with very similar designs. This paper presents the simulations and describes the measurement methods used for benchmarking electromagnetic simulations performed for the impedance evaluation of the LIU wire scanner for the PS-Booster. Additionally, the device was fitted with an RF feed-through in order to monitor and attenuate certain undesired modes supported by this structure. |
---|