Cargando…
HL-LHC Inner Triplet Powering and Control Strategy
In order to achieve the target 3000 fb-1 integrated field for the HL-LHC (High Luminosity ' Large Hadron Collider) at ATLAS and CMS, new large aperture quadrupoles are required for the final focusing triplet magnets before the interaction points. These low-' magnets, based on the Nb$_{3}$S...
Autores principales: | , |
---|---|
Lenguaje: | eng |
Publicado: |
2017
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.18429/JACoW-IPAC2017-WEPVA116 http://cds.cern.ch/record/2289470 |
_version_ | 1780956323233398784 |
---|---|
author | Yammine, Samer Thiesen, Hugues |
author_facet | Yammine, Samer Thiesen, Hugues |
author_sort | Yammine, Samer |
collection | CERN |
description | In order to achieve the target 3000 fb-1 integrated field for the HL-LHC (High Luminosity ' Large Hadron Collider) at ATLAS and CMS, new large aperture quadrupoles are required for the final focusing triplet magnets before the interaction points. These low-' magnets, based on the Nb$_{3}$Sn technology, deliver a peak field of 11.4 T. They consist of two outer quadrupoles, Q1 and Q3 and a central one divided into two identical magnets, Q2a and Q2b. To optimize the powering and the beam dynamics of these triplets, the quadrupoles will be powered in series by a single high-current two quadrants (2-Q) converter [18 kA, ±10 V]. Three 4-Q trim power converters are added over Q1 [±2 kA, ±10 V], Q2a [±0.12 kA, ±10 V] and Q3 [±2 kA, ±10 V] to account for possible transfer function difference between the quadrupoles. This paper presents the powering scheme of the four mentioned coupled circuits. A digital control strategy, using four standard LHC digital controllers, to decouple the four systems and to achieve a high precision control is proposed and discussed. |
id | oai-inspirehep.net-1626403 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2017 |
record_format | invenio |
spelling | oai-inspirehep.net-16264032022-01-25T15:57:34Zdoi:10.18429/JACoW-IPAC2017-WEPVA116http://cds.cern.ch/record/2289470engYammine, SamerThiesen, HuguesHL-LHC Inner Triplet Powering and Control StrategyAccelerators and Storage RingsIn order to achieve the target 3000 fb-1 integrated field for the HL-LHC (High Luminosity ' Large Hadron Collider) at ATLAS and CMS, new large aperture quadrupoles are required for the final focusing triplet magnets before the interaction points. These low-' magnets, based on the Nb$_{3}$Sn technology, deliver a peak field of 11.4 T. They consist of two outer quadrupoles, Q1 and Q3 and a central one divided into two identical magnets, Q2a and Q2b. To optimize the powering and the beam dynamics of these triplets, the quadrupoles will be powered in series by a single high-current two quadrants (2-Q) converter [18 kA, ±10 V]. Three 4-Q trim power converters are added over Q1 [±2 kA, ±10 V], Q2a [±0.12 kA, ±10 V] and Q3 [±2 kA, ±10 V] to account for possible transfer function difference between the quadrupoles. This paper presents the powering scheme of the four mentioned coupled circuits. A digital control strategy, using four standard LHC digital controllers, to decouple the four systems and to achieve a high precision control is proposed and discussed.CERN-ACC-2017-215oai:inspirehep.net:16264032017 |
spellingShingle | Accelerators and Storage Rings Yammine, Samer Thiesen, Hugues HL-LHC Inner Triplet Powering and Control Strategy |
title | HL-LHC Inner Triplet Powering and Control Strategy |
title_full | HL-LHC Inner Triplet Powering and Control Strategy |
title_fullStr | HL-LHC Inner Triplet Powering and Control Strategy |
title_full_unstemmed | HL-LHC Inner Triplet Powering and Control Strategy |
title_short | HL-LHC Inner Triplet Powering and Control Strategy |
title_sort | hl-lhc inner triplet powering and control strategy |
topic | Accelerators and Storage Rings |
url | https://dx.doi.org/10.18429/JACoW-IPAC2017-WEPVA116 http://cds.cern.ch/record/2289470 |
work_keys_str_mv | AT yamminesamer hllhcinnertripletpoweringandcontrolstrategy AT thiesenhugues hllhcinnertripletpoweringandcontrolstrategy |