Cargando…

Relative Insensitivity to Inhomogeneities on Very High Energy Electron Dose Distributions

We investigated the effects of heterogeneous regions on dose deposition of very high-energy electrons (VHEE) using both Geant4 simulations and experiments performed at the CALIFES facility at CERN. Small air and acetal plastic (bone equivalent) cavities were embedded in a water phantom and irradiate...

Descripción completa

Detalles Bibliográficos
Autores principales: Lagzda, Agnese, Angal-Kalinin, Deepa, Jones, James, Jones, Roger, Kirkby, Karen, Farabolini, W
Lenguaje:eng
Publicado: 2017
Materias:
Acceso en línea:https://dx.doi.org/10.18429/JACoW-IPAC2017-THPVA139
http://cds.cern.ch/record/2290468
Descripción
Sumario:We investigated the effects of heterogeneous regions on dose deposition of very high-energy electrons (VHEE) using both Geant4 simulations and experiments performed at the CALIFES facility at CERN. Small air and acetal plastic (bone equivalent) cavities were embedded in a water phantom and irradiated with a 197 MeV electron beam. Experimentally determined transverse dose profiles were acquired using radiation sensitive EBT3 Gafchromic films embedded in the water phantom at various depths. EBT3 Gafchromic films were found to be a suitable dosimeter for relative dose dosimetry of VHEE beams. Simulated and measured results were found to be consistent with each other and the largest discrepancy was found to be no more than 5%. Dose profiles of VHEE beams were found to be relatively insensitive to embedded high and low density geometries.