Cargando…

A parts-per-billion measurement of the antiproton magnetic moment

Precise comparisons of the fundamental properties of matter–antimatter conjugates provide sensitive tests of charge–parity–time (CPT) invariance1, which is an important symmetry that rests on basic assumptions of the standard model of particle physics. Experiments on mesons2, leptons3, 4 and baryons...

Descripción completa

Detalles Bibliográficos
Autores principales: Smorra, C, Sellner, S, Borchert, M J, Harrington, J A, Higuchi, T, Nagahama, H, Tanaka, T, Mooser, A, Schneider, G, Blaum, K, Matsuda, Y, Ospelkaus, C, Quint, W, Walz, J, Yamazaki, Y, Ulmer, S
Lenguaje:eng
Publicado: 2017
Materias:
Acceso en línea:https://dx.doi.org/10.1038/nature24048
http://cds.cern.ch/record/2291601
_version_ 1780956436844511232
author Smorra, C
Sellner, S
Borchert, M J
Harrington, J A
Higuchi, T
Nagahama, H
Tanaka, T
Mooser, A
Schneider, G
Blaum, K
Matsuda, Y
Ospelkaus, C
Quint, W
Walz, J
Yamazaki, Y
Ulmer, S
author_facet Smorra, C
Sellner, S
Borchert, M J
Harrington, J A
Higuchi, T
Nagahama, H
Tanaka, T
Mooser, A
Schneider, G
Blaum, K
Matsuda, Y
Ospelkaus, C
Quint, W
Walz, J
Yamazaki, Y
Ulmer, S
author_sort Smorra, C
collection CERN
description Precise comparisons of the fundamental properties of matter–antimatter conjugates provide sensitive tests of charge–parity–time (CPT) invariance1, which is an important symmetry that rests on basic assumptions of the standard model of particle physics. Experiments on mesons2, leptons3, 4 and baryons5, 6 have compared different properties of matter–antimatter conjugates with fractional uncertainties at the parts-per-billion level or better. One specific quantity, however, has so far only been known to a fractional uncertainty at the parts-per-million level7, 8: the magnetic moment of the antiproton, . The extraordinary difficulty in measuring with high precision is caused by its intrinsic smallness; for example, it is 660 times smaller than the magnetic moment of the positron3. Here we report a high-precision measurement of in units of the nuclear magneton μN with a fractional precision of 1.5 parts per billion (68% confidence level). We use a two-particle spectroscopy method in an advanced cryogenic multi-Penning trap system. Our result  = −2.7928473441(42)μN (where the number in parentheses represents the 68% confidence interval on the last digits of the value) improves the precision of the previous best measurement8 by a factor of approximately 350. The measured value is consistent with the proton magnetic moment9, μp = 2.792847350(9)μN, and is in agreement with CPT invariance. Consequently, this measurement constrains the magnitude of certain CPT-violating effects10 to below 1.8 × 10−24 gigaelectronvolts, and a possible splitting of the proton–antiproton magnetic moments by CPT-odd dimension-five interactions to below 6 × 10−12 Bohr magnetons11.
id oai-inspirehep.net-1631907
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2017
record_format invenio
spelling oai-inspirehep.net-16319072020-11-24T13:55:15Zdoi:10.1038/nature24048http://cds.cern.ch/record/2291601engSmorra, CSellner, SBorchert, M JHarrington, J AHiguchi, TNagahama, HTanaka, TMooser, ASchneider, GBlaum, KMatsuda, YOspelkaus, CQuint, WWalz, JYamazaki, YUlmer, SA parts-per-billion measurement of the antiproton magnetic momentPhysics in GeneralPrecise comparisons of the fundamental properties of matter–antimatter conjugates provide sensitive tests of charge–parity–time (CPT) invariance1, which is an important symmetry that rests on basic assumptions of the standard model of particle physics. Experiments on mesons2, leptons3, 4 and baryons5, 6 have compared different properties of matter–antimatter conjugates with fractional uncertainties at the parts-per-billion level or better. One specific quantity, however, has so far only been known to a fractional uncertainty at the parts-per-million level7, 8: the magnetic moment of the antiproton, . The extraordinary difficulty in measuring with high precision is caused by its intrinsic smallness; for example, it is 660 times smaller than the magnetic moment of the positron3. Here we report a high-precision measurement of in units of the nuclear magneton μN with a fractional precision of 1.5 parts per billion (68% confidence level). We use a two-particle spectroscopy method in an advanced cryogenic multi-Penning trap system. Our result  = −2.7928473441(42)μN (where the number in parentheses represents the 68% confidence interval on the last digits of the value) improves the precision of the previous best measurement8 by a factor of approximately 350. The measured value is consistent with the proton magnetic moment9, μp = 2.792847350(9)μN, and is in agreement with CPT invariance. Consequently, this measurement constrains the magnitude of certain CPT-violating effects10 to below 1.8 × 10−24 gigaelectronvolts, and a possible splitting of the proton–antiproton magnetic moments by CPT-odd dimension-five interactions to below 6 × 10−12 Bohr magnetons11.oai:inspirehep.net:16319072017
spellingShingle Physics in General
Smorra, C
Sellner, S
Borchert, M J
Harrington, J A
Higuchi, T
Nagahama, H
Tanaka, T
Mooser, A
Schneider, G
Blaum, K
Matsuda, Y
Ospelkaus, C
Quint, W
Walz, J
Yamazaki, Y
Ulmer, S
A parts-per-billion measurement of the antiproton magnetic moment
title A parts-per-billion measurement of the antiproton magnetic moment
title_full A parts-per-billion measurement of the antiproton magnetic moment
title_fullStr A parts-per-billion measurement of the antiproton magnetic moment
title_full_unstemmed A parts-per-billion measurement of the antiproton magnetic moment
title_short A parts-per-billion measurement of the antiproton magnetic moment
title_sort parts-per-billion measurement of the antiproton magnetic moment
topic Physics in General
url https://dx.doi.org/10.1038/nature24048
http://cds.cern.ch/record/2291601
work_keys_str_mv AT smorrac apartsperbillionmeasurementoftheantiprotonmagneticmoment
AT sellners apartsperbillionmeasurementoftheantiprotonmagneticmoment
AT borchertmj apartsperbillionmeasurementoftheantiprotonmagneticmoment
AT harringtonja apartsperbillionmeasurementoftheantiprotonmagneticmoment
AT higuchit apartsperbillionmeasurementoftheantiprotonmagneticmoment
AT nagahamah apartsperbillionmeasurementoftheantiprotonmagneticmoment
AT tanakat apartsperbillionmeasurementoftheantiprotonmagneticmoment
AT moosera apartsperbillionmeasurementoftheantiprotonmagneticmoment
AT schneiderg apartsperbillionmeasurementoftheantiprotonmagneticmoment
AT blaumk apartsperbillionmeasurementoftheantiprotonmagneticmoment
AT matsuday apartsperbillionmeasurementoftheantiprotonmagneticmoment
AT ospelkausc apartsperbillionmeasurementoftheantiprotonmagneticmoment
AT quintw apartsperbillionmeasurementoftheantiprotonmagneticmoment
AT walzj apartsperbillionmeasurementoftheantiprotonmagneticmoment
AT yamazakiy apartsperbillionmeasurementoftheantiprotonmagneticmoment
AT ulmers apartsperbillionmeasurementoftheantiprotonmagneticmoment
AT smorrac partsperbillionmeasurementoftheantiprotonmagneticmoment
AT sellners partsperbillionmeasurementoftheantiprotonmagneticmoment
AT borchertmj partsperbillionmeasurementoftheantiprotonmagneticmoment
AT harringtonja partsperbillionmeasurementoftheantiprotonmagneticmoment
AT higuchit partsperbillionmeasurementoftheantiprotonmagneticmoment
AT nagahamah partsperbillionmeasurementoftheantiprotonmagneticmoment
AT tanakat partsperbillionmeasurementoftheantiprotonmagneticmoment
AT moosera partsperbillionmeasurementoftheantiprotonmagneticmoment
AT schneiderg partsperbillionmeasurementoftheantiprotonmagneticmoment
AT blaumk partsperbillionmeasurementoftheantiprotonmagneticmoment
AT matsuday partsperbillionmeasurementoftheantiprotonmagneticmoment
AT ospelkausc partsperbillionmeasurementoftheantiprotonmagneticmoment
AT quintw partsperbillionmeasurementoftheantiprotonmagneticmoment
AT walzj partsperbillionmeasurementoftheantiprotonmagneticmoment
AT yamazakiy partsperbillionmeasurementoftheantiprotonmagneticmoment
AT ulmers partsperbillionmeasurementoftheantiprotonmagneticmoment