Cargando…
Fabrication and testing of a novel S-Band backward travelling wave accelerating structure for proton therapy linacs
Compact and more affordable, facilities for proton therapy are now entering the market of commercial medical accelerators. At CERN, a joint collaboration between CLIC and TERA Foundation led to the design, fabrication and testing of a high gradient accelerating structure prototype, capable of halvin...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2017
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.18429/JACoW-LINAC2016-MOPLR048 http://cds.cern.ch/record/2304524 |
Sumario: | Compact and more affordable, facilities for proton therapy are now entering the market of commercial medical accelerators. At CERN, a joint collaboration between CLIC and TERA Foundation led to the design, fabrication and testing of a high gradient accelerating structure prototype, capable of halving the length of state-of-art light ion therapy linacs. This paper focuses on the mechanical design, fabrication and testing of a first prototype. CLIC standardized bead-pull measurement setup was used, leading to a quick and successful tuning of the prototype. The high power tests will soon start in order to prove that the structure can withstand a very high accelerating gradient while suffering no more than 10⁻⁶ breakdown per pulse per meter (bpp/m), resulting in less than one breakdown per treatment session. |
---|