Cargando…

New directions in the CernVM file system

The CernVM File System today is commonly used to host and distribute application software stacks. In addition to this core task, recent developments expand the scope of the file system into two new areas. Firstly, CernVM-FS emerges as a good match for container engines to distribute the container im...

Descripción completa

Detalles Bibliográficos
Autores principales: Blomer, Jakob, Buncic, Predrag, Ganis, Gerardo, Hardi, Nikola, Meusel, Rene, Popescu, Radu
Lenguaje:eng
Publicado: 2017
Materias:
Acceso en línea:https://dx.doi.org/10.1088/1742-6596/898/6/062031
http://cds.cern.ch/record/2297056
Descripción
Sumario:The CernVM File System today is commonly used to host and distribute application software stacks. In addition to this core task, recent developments expand the scope of the file system into two new areas. Firstly, CernVM-FS emerges as a good match for container engines to distribute the container image contents. Compared to native container image distribution (e.g. through the “Docker registry”), CernVM-FS massively reduces the network traffic for image distribution. This has been shown, for instance, by a prototype integration of CernVM-FS into Mesos developed by Mesosphere, Inc. We present a path for a smooth integration of CernVM-FS and Docker. Secondly, CernVM-FS recently raised new interest as an option for the distribution of experiment conditions data. Here, the focus is on improved versioning capabilities of CernVM-FS that allows to link the conditions data of a run period to the state of a CernVM-FS repository. Lastly, CernVM-FS has been extended to provide a name space for physics data for the LIGO and CMS collaborations. Searching through a data namespace is often done by a central, experiment specific database service. A name space on CernVM-FS can particularly benefit from an existing, scalable infrastructure and from the POSIX file system interface.