Cargando…

Numerical modeling of fast beam ion instabilities

The fast beam ion instability may pose a risk to the operation of future electron accelerators with beams of high intensity and small emittances, including several structures of the proposed CLIC accelerator complex. Numerical models can be used to identify necessary vacuum specifications to suppres...

Descripción completa

Detalles Bibliográficos
Autores principales: Mether, Lotta, Iadarola, Giovanni, Rumolo, Giovanni
Lenguaje:eng
Publicado: 2016
Materias:
Acceso en línea:https://dx.doi.org/10.18429/JACoW-HB2016-WEAM4X01
http://cds.cern.ch/record/2304637
Descripción
Sumario:The fast beam ion instability may pose a risk to the operation of future electron accelerators with beams of high intensity and small emittances, including several structures of the proposed CLIC accelerator complex. Numerical models can be used to identify necessary vacuum specifications to suppress the instability, as well as requirements for a possible feedback system. Vacuum requirements imposed by the instability have previously been estimated for linear CLIC structures, using the strong-strong macroparticle simulation tool FASTION. Currently, efforts are being made to improve the simulation tools, and allow for equivalent studies of circular structures, such as the CLIC damping rings, on a multi-turn scale. In this contribution, we review the recent code developments, and present first simulation results.